
504 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 10, NO. 7, OCTOBER 2002

Content Analysis for Audio Classification and
Segmentation

Lie Lu, Hong-Jiang Zhang, Senior Member, IEEE, and Hao Jiang

Abstract—In this paper, we present our study of audio content
analysis for classification and segmentation, in which an audio
stream is segmented according to audio type or speaker identity.
We propose a robust approach that is capable of classifying and
segmenting an audio stream into speech, music, environment
sound, and silence. Audio classification is processed in two steps,
which makes it suitable for different applications. The first step of
the classification is speech and nonspeech discrimination. In this
step, a novel algorithm based on K-nearest-neighbor (KNN) and
linear spectral pairs-vector quantization (LSP-VQ) is developed.
The second step further divides nonspeech class into music,
environment sounds, and silence with a rule-based classification
scheme. A set of new features such as the noise frame ratio and
band periodicity are introduced and discussed in detail. We
also develop an unsupervised speaker segmentation algorithm
using a novel scheme based on quasi-GMM and LSP correlation
analysis. Without a priori knowledge, this algorithm can support
the open-set speaker, online speaker modeling and real time
segmentation. Experimental results indicate that the proposed
algorithms can produce very satisfactory results.

Index Terms—Audio classification and segmentation, audio con-
tent analysis, speaker change detection, speaker segmentation.

I. INTRODUCTION

A UDIO classification and segmentation can provide useful
information for both audio content understanding and

video content analysis. Therefore, in addition to the classical
works on audio content analysis for audio classification and
audio retrieval [1], [2], recent works have also integrated audio
and visual information [12]–[14] in video structure parsing and
content analysis. In general, the application of audio content
analysis in video parsing can be considered in two parts. One
is to classify or segment an audio stream into different sound
classes such as speech, music, environment sound, and silence;
the other is to classify speech streams into segments of different
speakers. In this paper, our research works on these two tasks
will be presented.

Intensive studies have been conducted on audio classification
and segmentation by employing different features and methods.
In spite of these research efforts, high-accuracy audio classifica-
tion is only achieved for simple cases such as speech/music dis-
crimination. Pfeifferet al.[3] presented a theoretical framework
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and application of automatic audio content analysis using some
perceptual features. Saunders [4] presented a speech/music clas-
sifier based on simple features such as zero-crossing rate and
short-time energy for radio broadcast. The paper reported that
the accuracy rate can achieve 98% when a window size of 2.4
s is used. Meanwhile, Scheireret al. [5] introduced more fea-
tures for audio classification and performed experiments with
different classification models including GMM, BP-ANN, and
KNN. When using a window of the same size (2.4 s), the re-
ported error rate is 1.4%. However, it is found that these simple
features-based methods cannot offer satisfactory results particu-
larly when a smaller window is used or when more audio classes
such as environment sounds are taken into consideration.

Many other works have been conducted to enhance audio
classification algorithms. In [6], audio recordings are classified
into speech, silence, laughter, and nonspeech sounds, to segment
discussion recordings in meetings. In the work by Zhang and
Kuo [7], pitch tracking methods were introduced to discriminate
audio recordings into classes such as songs and speeches over
music, based on a heuristic-based model. Accuracy of greater
than 90% was reported. Srinivasan [12] proposed an approach
to detect and classify audio that consists of mixed classes such
as combinations of speech and music together with environment
sound. The accuracy of classification is more than 80%.

In this paper, we present a high-accuracy algorithm for audio
classification and segmentation. Speech, music, environment
sound, and silence, the basic sets required in audio/video
content analysis, are discriminated in a 1-s window, which is
shorter than the testing unit used in [4] and [5]. Compared to
other methods, our algorithm is computationally inexpensive
and more practical for different applications. In order to
improve the classification of the four audio classes in term of
accuracy and robustness, a set of new features includingband
periodicity is proposed and discussed in detail.

Another novel work contributed in this paper is the real-time
unsupervised speaker segmentation. We segment a speech
sequence into segments of different speakers. Unlike general
speaker identification or verification, no prior knowledge about
the number and identities of speakers in an audio clip are
assumed. In video browsing, if a speaker is first registered, a
traditional speaker identification algorithm can be used, just as
in the work of Brummer [16]. In video parsing applications,
the knowledge of speakers is often not available or difficult
to acquire. Therefore, it is desirable to perform unsupervised
speaker segmentation in audio analysis.

There are several reported works on unsupervised speaker
identification and clustering. Sugiyama [17] studied a simpler
case, in which the number of the speakers to be clustered was
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assumed known. Wilcox [18], in contrast, proposed an algo-
rithm based on HMM segmentation, where an agglomerative
clustering method is used when the prior knowledge of speakers
is unknown. Another system [19], [20] was proposed to sepa-
rate controller speech and pilot speech with the GMM model,
in addition to the speech and noise detection that were also con-
sidered in the framework. Speaker discrimination from the tele-
phone speeches was studied in [21] using HMM segmentation.
However, in this system, the number of speakers was limited to
two. Mori [22] addresses the problem of speaker changes detec-
tion and speaker clustering withouta priori speaker informa-
tion available. Chen [23] also presented an approach to detect
changes in speaker identity, environmental and channel condi-
tions by using the Bayesian information criterion. An accuracy
of 80% was reported.

Previous efforts to tackle the problem of unsupervised
speaker clustering consist of clustering audio segments into
homogeneous clusters according to speaker identity, back-
ground conditions, or channel conditions. Most methods used
can be classified into two categories. One is based on VQ or
clustering (GMM model), the other one is based on HMM
model. A deficiency of these models is that they cannot meet
the real-time requirement, since a computationally intensive
iterative operation is utilized.

Real-time speaker segmentation is required in many applica-
tions, such as speaker tracking in real-time news-video segmen-
tation and classification, or real-time speaker adapted speech
recognition. In this paper, we present a real-time, yet effective
and robust speaker segmentation algorithm based on LSP corre-
lation analysis. Both the speaker identities and speaker number
are assumed unknown. The proposed incremental speaker up-
dating and segmental clustering schemes ensure our method can
be processed in real-time with limited delay.

Fig. 1 shows the basic processing flow of the proposed ap-
proach that integrates audio segmentation and speaker segmen-
tation. After feature extraction, the input digital audio stream is
classified into speech and nonspeech. Nonspeech segments are
further classified into music, environmental sound, and silence,
while speech segments are further segmented by speaker iden-
tity. Detail processing will be discussed in the remaining sec-
tions.

The rest of the paper is organized as follows. Section II dis-
cusses in detail the audio features used in audio segmentation
and speaker segmentation. Section III presents the audio classi-
fication and segmentation scheme. In Section IV, speaker seg-
mentation algorithm is proposed. In Section V, empirical exper-
iments and performance evaluation of the proposed algorithms
are presented.

II. FEATURE ANALYSIS

In order to improve the accuracy of classification and seg-
mentation for audio sequence, it is critical to select good fea-
tures that can capture the temporal and spectral characteristics
of audio signal or the characteristics of speaker vocal tract. We
select following features to classify or segment audio stream,
high zero-crossing rate ratio(HZCRR), low short-time energy

Fig. 1. Basic processing flow of audio content analysis.

ratio (LSTER), spectrum flux(SF), LSP divergence distance,
band periodicity(BP), andnoise frame ratio(NFR). LSP, based
on the work presented in [8], is also employed in our unsuper-
vised speaker segmentation algorithm. These features will be
described in detail in this section.

A. High Zero-Crossing Rate Ratio

Zero-crossing rate (ZCR) is proved to be useful in charac-
terizing different audio signals. It has been popularly used in
speech/music classification algorithms. In our experiments, we
have found that the variation ofZCRis more discriminative than
the exact value ofZCR. Therefore, we usehigh zero-crossing
rate ratio (HZCRR) as one feature in our approach.

HZCRRis defined as the ratio of the number of frames whose
ZCR are above 1.5-fold average zero-crossing rate in an 1-s
window, as

HZCRR ZCR avZCR (1)

where is the frame index,ZCR is the zero-crossing rate
at the th frame, is the total number of frames,avZCRis
the averageZCRin a 1-s window; and sgn[.] is a sign function,
respectively.

In general, speech signals are composed of alternating voiced
sounds and unvoiced sounds in the syllable rate, while music
signals do not have this kind of structure. Hence, for speech
signal, its variation of zero-crossing rates (orHZCRR) will be
in general greater than that of music, as shown in Fig. 2.

Fig. 2 illustrates the probability distribution curves ofHZCRR
for speech and music signals. The curves are obtained from our
audio database using 1-s windows. It can be seen that the center
of HZCRRdistribution of speech segment is around 0.15, while
HZCRRvalues of music segments mostly fall below 0.1, though
there are significant overlaps between these two curves. Sup-
pose we only useHZCRRto discriminate speech from music
and use the cross-point of two curves in Fig. 2 as a threshold,
the discrimination error rate would be 19.36%.
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Fig. 2. Probability distribution curves ofHZCRR. (a) Speech and (b) music.

Fig. 3. Probability distribution curves ofLSTER. (a) Speech and (b) music.

B. Low Short-Time Energy Ratio

Similar toZCR, we also selected the variation, instead of the
exact value, of short-time energy as one component of our fea-
ture vector. Here, we uselow short-time energy ratio(LSTER)
to represent the variation of short-time energy (STE).

LSTERis defined as the ratio of the number of frames whose
STEare less than 0.5 time of average short-time energy in a 1-s
window, as the following:

LSTER avSTE–STE (2)

where is the total number of frames,STE is the short-time
energy at the th frame, andavSTEis the averageSTEin a 1-s
window.

LSTERis an effective feature, especially for discriminating
speech and music signals. In general, there are more silence
frames in speech than in music; as a result, theLSTERmeasure
of speech will be much higher than that of music. This can be
seen clearly from the probability distribution curves ofLSTER
for speech and music signals, as illustrated in the Fig. 3. It is
shown thatLSTERvalue of speech is around 0.15 to 0.5, while
that of music is mostly less than 0.15. Based on Fig. 3, if we use
the cross-point of twoLSTERcurves as a threshold to discrim-
inate speech from music, the error rate would be only 8.27%.
Therefore,LSTERis a good discriminator between speech and
music.

Fig. 4. Spectrum flux curve (0–200 s is speech, 201–350 s is music, and
351–450 s is environment sound).

C. Spectrum Flux

Spectrum flux(SF) is defined as the average variation value
of spectrum between the adjacent two frames in a 1-s window

SF

(3.1)

where is the discrete Fourier transform of theth frame
of input signal

(3.2)

and is the original audio data, is the window func-
tion, is the window length, is the order of DFT, is the
total number of frames andis a very small value to avoid cal-
culation overflow.

In our experiments, we found that, in general, theSFvalues of
speech are higher than those of music. In addition, the environ-
ment sound is among the highest and changes more dramatically
than the other two types of signals. Fig. 4 shows an example
of spectrum flux of speech, music and environment sound. The
speech segment is from 0 to 200 s, the music segment is from
201 to 350 s and the environment sound is from 351 to 450 s.
Therefore,SF is a good feature to discriminate speech, envi-
ronmental sound and music. This feature will be used in both
speech/nonspeech classification and music/environment sound
classification.

D. Band Periodicity

Band periodicity (BP) is defined as the periodicity of a sub-
band. It can be derived by subband correlation analysis. Here,
we have chosen four subbands: 5001000 Hz, 1000 2000 Hz,
2000 3000 Hz, and 30004000 Hz, respectively. The period-
icity property of each subband is represented by the maximum
local peak of the normalized correlation function. For example,
for a sine wave, itsBP is 1; but for white noise, itsBP is 0.
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Fig. 5. Band periodicity of an example audio segment.

The normalized correlation function is calculated from the
current frame and previous frame

(4.1)

where is the normalized correlation function;is the
band index, and is the frame index. is the subband digital
signal of current frame and previous frame, when , the
data is from the current frame; otherwise, the data is obtained
from the previous frame. is the total length of a frame.

We denote the maximum local peak as , where
is the index of the maximum local peak,is the band index
and is the frame index. That is, is band periodicity
of the th sub-band of theth frame. Thus, the band periodicity
is calculated as

(4.2)

where is the band periodicity ofth sub-band, is the total
frame number in one audio clip.

Fig. 5 shows an example of band periodicity comparison be-
tween music and environment sounds. The music segment in
the example is from 0 to 300 s, while the remaining part is envi-
ronment sounds. The vertical axis represents different frequency
sub-bands. It is observed that the band periodicities of music are
in general much higher than those of environment sound. This
is because music is more harmonic while environment sound is
more random. Therefore,band periodicityis an effective feature
in music/environment sound discrimination.

To show clearly the discrimination power of this feature, a
probability distribution curve ofband periodicityin the first sub-
band for environment sound and music is illustrated in the Fig. 6.
From Fig. 6, it can be obviously seen that the center ofvalue
of environment sound is around 0.5, while value of music is
around 0.8, there is a considerable difference between them.

Fig. 6. Probability distribution curves ofBP1. (a) Background sound and (b)
music.

Fig. 7. Probability distribution curves ofNFR. (a) Music and (b) environment
sound.

In our implementation, only the periodicity of the first two
bands and and the sum of the four bands’ periodicity,
bpSum, are used to discriminate music and environment sound.

E. Noise Frame Ratio

Noise frame ratio(NFR) is defined as the ratio of noise frames
in a given audio clip. A frame is considered as a noise frame if
the maximum local peak of its normalized correlation function
is lower than a preset threshold. TheNFR value of noise-like
environment sound is higher than that of music, as illustrated in
Fig. 7.

Fig. 7 shows the probability distribution curves ofNFR for
music and environment sounds from our audio database. For
music, almost noNFR value is above 0.3; however, for envi-
ronment sound, the portion ofNFRvalues that are higher than
0.3 is much higher.NFRreally depends on how noisy the signal
is. Data shows some environment sound is more noise-like.

F. LSP Distance Measure

Linear spectral pairs (LSPs) are derived from linear predictive
coefficients (LPC). Previous researches have shown thatLSP
has explicit difference in each audio class [10]. It is also found
thatLSPis more robust in the noisy environment [14].

– distance is used here to measure theLSPdissimilarity
between two 1-s audio clips [8]

LSP SP SP LSP

SP LSP LSP SP LSP SP (5)
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Fig. 8. LSP curve (0–200 s is speech; 201–350 s is music and 351–450 s is
noisy speech).

where LSP and SP are the estimatedLSP covariance ma-
trices, LSP and SP are the estimated mean vectors, from two
audio clip, respectively. In real implementation, ten-orderLSP
is extracted from each frame and then the covariance and mean
are estimated from each audio clip.

The distance is composed of two parts. The first part is de-
termined by the covariance of two segments and the second is
determined by covariance and mean. Because the mean is easily
biased by different environment condition, the second part is not
considered and only the first part is used to represent the dis-
tance, similar to the work [8]. It is also similar to the cepstral
mean subtraction (CMS) method used in speaker recognition
to compensate the effect of environment conditions and trans-
mission channels. Here, it is called divergence shape distance,
which is defined by

LSP SP SP LSP
(6)

This dissimilarity measure is effective to discriminate speech
and noisy speech from music. Fig. 8 shows an example ofLSP
distance between audio data and speech model obtained from
our training data. The speech segment is from 0 to 200 s, the
music segment is from 201 to 350 s and the noisy-speech seg-
ment is from 351 to 450 s. Obviously, theLSPdistance is dif-
ferent among these classes. The distance between speech data
and speech model is the smallest; while the distance between
music and speech model is the largest.

LSPdivergence shape is also a good measure to discriminate
between different speakers. In our algorithm, we will use this
feature to detect potential speaker change points with a 1-s step
and a 3-s window.

Denote that theLSPcovariance for th s and th s speech clip
is and , respectively. According to (6), the dissimilarity
measure of speaker models between these two speech clips can
be defined as

(7)

In general, if the dissimilarity is larger than a threshold,
these two speech clips could be considered from two different
speakers. Though it is a simple scheme, but it is capable of

Fig. 9. LSP divergence distance map.

measuring the difference between speakers. An example of
LSPdistance between different speakers is illustrated in Fig. 9.

Fig. 9 shows the dissimilarities between any two 3-s speech
subsegments in a 180-s-long speech. One threshold is used to
transform to binary value (0, 1). Value 0 is represented
by black pixel, while value 1 is represented by white pixel. It
can be clearly seen that the figure is symmetric, and there are
four speakers in this speech segment.

III. A UDIO CLASSIFICATION AND SEGMENTATION

With the features presented in the previous section, a two-step
scheme is proposed to classify audio clips into one of the four
audio classes: speech, music, environment sound and silence. At
the first step, an input audio stream is classified into speech and
nonspeech segments by a K-nearest-neighbor (KNN) classifier
and linear spectral pairs-vector quantization (LSP-VQ) analysis.
In the second step, nonspeech segments are further classified
into music, environmental sound, and silence by a rule-based
scheme. This two-step scheme is suitable for different applica-
tions and is capable of achieving high classification accuracy.
Based on these classification results, the segmentation of an
audio stream is achieved. Postprocessing scheme is then applied
to further reduce misclassification. The detailed system block
diagram of the proposed audio classification and segmentation
scheme is shown in Fig. 10.

In extracting audio features for our classification scheme, all
input signals are downsampled into 8-KHz sample rate and sub-
sequently segmented into subsegments by 1-s window. This 1-s
audio clip is taken as the basic classification unit in our algo-
rithms. If there are two audio types in 1-s audio clip, it will
be classified as the dominant audio type. The audio clip is fur-
ther divided into forty 25 ms nonoverlapping frames, on which
a 15 Hz bandwidth expansion is applied. A feature vector is ex-
tracted based on these 40 frames in 1-s audio clip to represent
the window. We use those features presented in the previous sec-
tion to represent the characteristics of each 1-s audio clip.

A. Speech/Nonspeech Discrimination

The first step of our audio classification scheme is to discrim-
inate speech and nonspeech segments. In this scheme, we first
apply aKNN classifier based onhigh zero-crossing rate ratio
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Fig. 10. Audio classification and segmentation system diagram.

(HZCRR), low short-time energy ratio(LSTER), andspectrum
flux (SF) to perform a fast preclassification of speech and non-
speech. Then, we propose a refine scheme based onLSPanal-
ysis [8] to refine the classification results and make the final
decision. Empirical experiments indicate that this scheme can
get higher accuracy than just combining every feature.

1) Preclassification: Due to the discrimination power and
low computational cost, we usehigh zero-crossing rate ratio,
low short-time energy ratio,andspectrum fluxto form a feature
vector, HZCRR, LSTER, SF , for fast preclassification. How-
ever, since none of the three features can achieve a 100% ac-
curate classification, a more sophisticated classification scheme
based onKNN classifier and VQ analysis is proposed.

Suppose the generated feature vectors satisfy Gaussian mix-
ture model, we can construct a number of speech codebooks
and nonspeech codebooks by our training database. The training
data for codebook generation is composed of four audio se-
quences of about 2 h from MPEG-7 test set CD1 and the other
100 environment sound clips of each about 4 s long. AKNN-2
classifier is used in our scheme to perform audio preclassifica-
tion.

This preclassification scheme works well in most cases and
is fast because of its computational simplicity. An exception is
when the scheme is applied to signals of mixed audio types.
As discussed in Section II,HZCRR, LSTER, and SF charac-
terize the fluctuations of zero-crossing rate, short-time energy,
and spectrum. However, these features of noisy speech signals
are similar to those of music. Furthermore, these features of
some music signals with the drum sounds as well as some en-
vironment sounds are often similar to those of speech signals.
Since preclassifier alone can not assure high classification accu-
racy, we proposed a refining scheme to solve the problem due
to mixed audio signals.

2) Refining Scheme:As presented in Section II,LSP is a
robust feature in the noisy environment for effective discrimi-
nation between noisy speech and music, though it is relatively
more computationally complex. Therefore, this feature is
utilized to refine the preclassification results. In our scheme,
we obtain a speechLSPcovariance matrix model as a speech
codebook, through a training process. The distance between

Fig. 11. Final speech/nonspeech discrimination.

the speech codebook and theLSP covariance of the testing
audio clip is then compared. If the distance is smaller than a
threshold, the audio clip is classified as speech; otherwise, it is
classified as nonspeech.

The procedures for final classification of speech and non-
speech are illustrated in Fig. 11.

As shown in Fig. 11, the result of preclassification is exam-
ined by measuring the distance of an audio clip from the speech
model codebook. We denoted the distance as. Depending on
the preclassification result, two thresholds are used in making
the final decision. If the preclassification result is speech, then
is compared againstThreshold1. If is greater thanThreshold1,
the audio clip is classified as nonspeech. Otherwise,is com-
pared againstThreshold2, and the same rule is applied to make
final decision.

Here is some guide to settingThreshold1 andThreshold2.
Supposing theLSP distance between speech clip and speech
codebook satisfies a Gaussian distribution: , almost
no value (about 0.03%) will be larger than . If the
distance of one clip is larger than this value, the clip is most
likely is a nonspeech. Thus theThreshold1 can be set as

Threshold (8.1)

where is a coefficient that is usually set to be three.
Similarly, supposing theLSP distance between nonspeech

clip and speech codebook satisfies Gaussian distribution
, then theThreshold2 can be set as

Threshold (8.2)

where is another coefficient that also usually set to be three.
In general,Threshold1 is greater thanThreshold2. Thus, we

can prevent too many preclassification results from being con-
verted incorrectly.

In practical applications, four speech model codebooks
are generated from training data using the Linde–Buzo–Gray
(LBG) algorithm [11]. The training data include speeches by
different speakers at different ages and of different genders, in
various recording conditions. The dissimilarity of a test audio
clip is defined as the minimum distance between the clip and
the four speech model codebooks.
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B. Music, Environment Sound, and Silence Classification
Scheme

Nonspeech is further classified into music, environment
sound, and silence segments. In our scheme, silence detection
is performed first. Then, for nonsilence segment, it is classified
into music or environment sound by applying a set of rules.

1) Detecting Silence:Silence detection is performed based
on short-time energy and zero-crossing rate in 1-s windows. If
the average short-time energy and zero-crossing rate is lower
than a threshold, the segment is classified as silence; otherwise,
it is classified as nonsilence segment. This simple scheme works
well in our applications.

2) Discriminating Music From Environment Sound: Band
periodicity (BP), spectrum flux(SF), and noise frame ratio
(NFR) are used to discriminate music from environment
sounds.BP acts as the basic measure. As shown in Fig. 5, the
band periodicity of music is greater than that of environment
sounds in most cases. However, it is noted that there are certain
degree of overlaps in this feature distribution, which can lead
to potential classification errors. To avoid this problem,SFand
NFRare also used. From Fig. 4, theSFof environment sound
is much higher than that of music in most of cases, while in
Fig. 7, there is almost noNFRvalue of music higher than 0.35.
Hence, these facts are utilized in our algorithm according to the
following rule.

First, if any of the , , or bpSumof an audio clip is
lower than the predefined thresholds, the clip is considered as a
segment of environment sounds. Otherwise, it goes to next step.

Then, if NFRof a clip is greater than a given threshold, the
clip is classified as noise-like environment sound. Otherwise it
goes to third step, in whichSF of the window is examined. If
theSF is greater than a threshold, a clip is also classified as en-
vironment sound. This rule is useful especially for some strong
periodicity environment sounds such as tone signal whoseBP
and NFR are similar to that of music signals. Onlyspectrum
flux can distinguish them.

Finally, music segments can be segmented by excluding
above conditions. This is because theBP values of for music
signals are usually higher, butNFR andSF values are lower,
compared to environmental sound.

The decision process is illustrated in Fig. 12, whereBP ,
NFR , and SF are thresholds for the featureBP, NFR, and

SF, respectively.
The optimal thresholds could be obtained by searching the

whole feature space in order to minimize the global misclas-
sification. However, it will be very time-consuming. In fact,
the thresholds could be constrained in a certain region when
searching the optimal one according to the feature distribution
characteristics. Suppose the mean and covariance of each fea-
ture of music are BP BP , NFR NFR , and SF SF ,
respectively, the constraining regions are set as

BP BP BP BP (9.1)

NFR NFR NFR NFR (9.2)

SF SF SF SF (9.3)

Fig. 12. Music/environment sound discrimination process.

Then, the optimal thresholds ( BP , NFR , SF can be
exhaustively searched in the above space. In actual implemen-
tation, we discretize each dimension into 40 values. For each
value, we can get the misclassification result. The value which
resulted in least error is taken as an optimal threshold.

C. Final Segmentation and Smoothing

Final segmentation of an audio stream is achieved by clas-
sifying each 1-s window into an audio class. Meanwhile, con-
sidering that the audio stream is always continuous in video
program, it is highly impossible to change the audio types too
suddenly or too frequently. Under this assumption, we apply
smoothing rules in final segmentation of an audio sequence. The
first rule used is

if then

where a 3-s sequence is considered,, , stands for
the audio type of previous 2-s, previous second and current
second, respectively. This rule implies that if the middle
second is different from the other two while the other two
are the same, the middle one is considered as misclassifi-
cation. For example, if we detect a pattern of consecutive
sequence like “speech–music–speech,” it is most likely the
sequence should belong to speeches. But for sequence such
as “speech–music-environment sound,” the middle second
can either be correct or incorrect classification. We can also
optionally rectify the middle second as the previous or the
succeeding audio type. In our approach, we will uniformly
rectify the middle second according to its previous audio type.
That is

if

then

It should be noted that rules 1 and 2 are not applicable to
silence second, since silence is highly possible to appear in 1-s
window. That is, the sequence such as “speech–silence–speech”
is accepted. Consequently, by combining the above three rules,
the final rule becomes

if SILENCE

then
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Fig. 13. Flow diagram for speaker change detection.

IV. SPEAKER SEGMENTATION

If an audio segment belongs to speech, we further segment
it according to the speakers, i.e., the speaker transitions are
detected in the speech segments. As mentioned in Section II,
LSP analysis will be applied to speaker changes detection.
Fig. 13 illustrates our unsupervised speaker change detection
algorithm. The algorithm is mainly composed of three modules.
They are front-end process module, segmentation module, and
the module for clustering and updating speaker model.

The input speech stream is first segmented into 3-s subseg-
ments with 2-s overlapping. That is, the step or temporal res-
olution of the segmentation is 1 s. Each subsegment is prepro-
cessed by removing silence and unvoiced frame. Presegment is
processed to find potential speaker change point. If the boundary
of a potential speaker change is not detected, current speaker
model is updated incrementally. Otherwise, Bayesian informa-
tion criterion (BIC) is employed to verify the correctness of de-
tected boundary.

A. Front-End Processing

The input audio stream is first downsampled into 8 KHZ,
16 bits, mono channel, and preemphasized, a common format
as used in the audio classification process. The speech stream is
then divided into small subsegments by a 3-s window with 2-s
overlapping. The subsegment is further divided into nonoverlap-
ping 25-ms-long frames. The most important feature extracted
from each frame isLSPvector. Other extracted features include
short-time energy (STE) and zero-crossing rate (ZCR). They are
used to discriminate silence frames and unvoiced frames, which
should be excluded when estimating speaker model.

B. Potential Speaker Change Detection

At this step, speaker model is extracted for each subsegment,
LSP divergence distance is used to measure the dissimilarity
between each two neighboring speaker models at each time slot,
as shown in Fig. 14(a). Thus, if a local maximum is found in
the LSP distance series, and furthermore if it is larger than a
predefined threshold, it is taken as a potential speaker change
point.

Let denote the distance between theth and th
speech subsegment, as defined by (8). A potential speaker
change is detected betweenth and th speech subseg-
ment, if the following conditions are satisfied:

(10)

where is a threshold.
The first two conditions guarantee a local peak exists, and

the last condition can prevent very low peaks from being de-
tected. Reasonable results can be achieved by using this simple
criterion. However, the threshold is difficult to seta priori. If the
threshold is too small, false detection would be easily generated.
False detection could be reduced by increasing the threshold,
with the expense that some positive speaker change boundaries
could be missed. The threshold is affected by factors such as
insufficient estimate data and different environment conditions.
For example, from our experiments, we found that the distance
between speech subsegments will increase if the speech is in a
noisy environment. Therefore, the threshold should be increased
accordingly in a noisy environment. To obtain a more robust
threshold, an automatic threshold setting method is proposed as
follows.

In our algorithm, the threshold is automatically set according
to the previous successive distances, i.e.,

(11)

where is the number of previous distances used for predicting
threshold, and is a coefficient used as an amplifier. We set

in our algorithm. The threshold determined in this way
works satisfactory in different conditions. However, the false de-
tections can still exist due to the insufficient data in estimating
the speaker model accurately from only one short speech sub-
segment. The estimated speaker model would be biased in this
case.

In order to solve this problem, we should use as much data as
possible to update speaker model. A more accurate refinement
method is proposed to refine the above potential speaker change
boundaries.

C. Incremental Speaker Model Updating

In order to collect as much data as possible to estimate
speaker model more accurately, we utilize the detection results
of potential speaker change. If no potential speaker change
point is detected, the next subsegment is assumed as the same
speaker as the previous one. Thus, we update the current
speaker model using this available new data, as shown in
Fig. 14(b).

GMM-32 is used to model a speaker. The model is estab-
lished progressively as more and more data become available.
Initially, there is no sufficient speaker data, thus GMM-1 is used.
When more speaker data are available, the model will grow up
to GMM-32 gradually.

In general, EM algorithm is used to estimate the Gaussian
mixture models. However, two problems will be introduced.
First, it causes storage overhead since all feature data are
required to be saved in memory or disk. Second, the recur-
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Fig. 14. Illustration of speaker change detection.

sive process of EM algorithm could not guarantee real-time
processing. Therefore, we introduce an alternative clustering
method which is less time consuming. Although the accuracy
is not as high as the EM algorithm, it works well most of the
time. The detail algorithm is described in the following.

Suppose the current speaker model is ob-
tained from the previous subsegments and there is no
potential speaker change point between th and th
speech segment, it implies these segments belong to the same
speaker. Thus, we update the current speaker modelusing
the feature data of the th segment. If the model of th speech
segment is , the current speaker model could be up-
dated as

(12)

where and is the number of feature vectors used for mod-
eling and , respectively.

The third part of (12) is determined by the means. However,
the means can be easily biased by different environment condi-
tions. In practice, we ignore the mean part of (12) to compensate
the effect of different environment conditions and transmission
channel. Then, (12) is simplified as

(13)

The above procedure is looped till the dissimilarity between
the speaker models before and after updating is small enough
or a potential speaker change point is met. The dissimilarity
is also measured by theLSPdivergence shape distance. When
the dissimilarity is small enough, it is assumed that the current
Gaussian model is estimated accurately with sufficient training
data. In other words, it is not necessary to continue updating.
The next Gaussian model, , is initiated and updated with
the new data using the same method.

For one speaker, several Gaussian models will be estimated
by the above method. This is called segmental clustering since

each component is obtained from one speaker segment. Com-
bining these Gaussian models would form a quasi-Gaussian
mixture model. The weight of each Gaussian model is set by
their corresponding number of training data. Supposing the
quasi-Gaussian mixture model for a speaker is GMM-s, in
which each Gaussian model is estimated by feature
vectors ( ). Then, the weight of the th Gaussian
model is computed by

(14)

where is the total number of feature vectors.
By using this method, the speaker model will grow from

GMM-1, GMM-2, up to GMM32. When the GMM32 is
reached, the updating of the speaker model is terminated. This
method (quasi-GMM by segmental clustering) is slightly dif-
ferent from the original GMM. It tends to neglect low-weighted
components in a GMM and is less accurate than GMM obtained
using EM algorithms. Nevertheless, it still can capture the most
important components in GMM, and furthermore, real-time
requirement is met due to its computational simplicity. Through
our empirical experiments, it could achieve reasonable accu-
racy.

D. Speaker Change Boundary Refinement

There are false positives in the potential speaker change
points obtained with the algorithms described in Section IV-B.
To remove false positives and detect only real speaker change
boundaries, a refinement algorithm is used. The algorithm is
based on the dissimilarity between the current segment and the
previous speaker model obtained from the segments before the
current potential boundary. In this step, Bayesian information
criterion (BIC) [23], [24] is used to measure the dissimilarity,
as shown in Fig. 14(c).

Suppose two Gaussian model from two speech clips are
and , the number of data used to estimate

these two models are and , respectively; and when one
Gaussian Model is used to estimate these two speech clips,
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the model is . The BIC difference between the two
models is

(15)

where is a penalty factor to compensated for small size cases,
and is the feature dimension. Generally, .

According to BIC theory, ifBIC is positive, the
two speech clips could be considered from different sources
(speakers). The advantage of using BIC is that it is threshold
free.

Suppose at the potential speaker boundary, the model of
previous speaker is GMM-s, in which each Gaussian model is

; and the model of current segment
is . Then the distance between them is estimated as
the weighted sum of the distance between and each

BIC (16)

This distance does not take the GMM-s as an integral one,
but as several independent components. However, it is still rea-
sonable since the GMM-s model is obtained from segmental
clustering. That is, each component Gaussian model is obtained
from an independent segment. The BIC distance considering
one component of GMM-s can be used as the similarity confi-
dence between the current segment and one segment of the pre-
vious speaker. Thus, the weighted sum (average distance) can
be used to represent the distance between current segment and
previous speaker.

Based on the aforementioned BIC theory, if , it must
be a real speaker change boundary. If a candidate is not a real
boundary, the speaker data is used to update the speaker model
following the method previously described.

LSP divergence distance or Bayesian information criterion
is not uniformly used at potential speaker boundary detection
and refinement. The reason is as follows. At the step of poten-
tial speaker change detection, the data is too small to estimate
a model accurately. Bayesian information criterion is found to
be vulnerable by different words or different speakers, so false
alarms can be easily generated. At the step of potential boundary
refining, the model is more accurate; moreover, BIC could com-
pensate different training data and is threshold free, whileLSP
divergence distance depends on thresholds. It is more efficient
for BIC in this step, as shown in our experiments.

V. EXPERIMENT RESULTS

A. Audio Classification and Segmentation Evaluations

The evaluation of the proposed audio classification and seg-
mentation algorithms have been performed by using an audio
database composing of data from MPEG-7 test data set CD1, TV
news, movie clips, and some audio clips from the Internet. This
database includes speech in various conditions, such as in record
studios, speeches with telephone (4 kHz) bandwidth and 8 kHz

TABLE I
SPEECH, MUSIC, ENVIRONMENT SOUND CLASSIFICATION ON

BASELINE SYSTEM (UNIT: 100%)

TABLE II
BASELINE CLASSIFICATION RESULT ON PURE SPEECH AND

NOISY SPEECH(UNIT: 100%)

TABLE III
CLASSIFICATION ON PURE SPEECH AND NOISY SPEECH

AFTER REFINEMENT (UNIT: 100%)

bandwidth. The music content in this data set is mainly songs
and pop music. Such music contents are difficult for most audio
classifiers. The background sound in the database include many
types, such as aviations, animals, autos, beeps, cartoon, combat,
crowds, and so on. Two hours of data was used for training, and
4-h data was used for testing. The testing data includes about
9600 s speech, 3400 s music, and 1200 s environment sounds.
The training data is approximately half of the testing data. In our
experiments, we set 1 s as a test unit. If there are two audio types
in a 1-s audio clip, we will classify it as the dominant audio type.

We first implement a baseline system which uses the feature
(HZCRR, LSTER, SF) with clustering and the NNmethod, as
described in the Section III. The performance data are listed in
Table I.

This baseline system works well for speech/nonspeech dis-
crimination, but does not work well on environment sound. In
our experiments, we also found that the baseline system has
worse performance on noisy speech than pure speech. About
26.38% noisy speech is discriminated as music, as shown in the
Table II. This is because some features of noisy speech are very
similar to those of music, in particular the pop music.

These facts show that the base system is only effective as a
preclassification process, and more improvements are expected.
Therefore, we propose to use new features to increase the clas-
sification performance of noisy speech and environment sound.
After the refinement scheme byLSPdivergence shape, the per-
formance is improved significantly, as shown in Table III.

After employing our music and environment classification
scheme, the performance for environment classification is also
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TABLE IV
SPEECH, MUSIC, ENVIRONMENT SOUND CLASSIFICATION

BEFORESMOOTHING (UNIT: 100%)

TABLE V
FINAL RESULT OF SPEECH, MUSIC, ENVIRONMENT SOUND

CLASSIFICATION (UNIT: 100%)

TABLE VI
THE TOTAL ACCURACY RESULT FORDIFFERENTDISCRIMINATION TYPE

improved. The total performance of our system is showed in
Table IV.

Considering the continuity of audio stream, a smoothing
scheme is processed. The performance has been further im-
proved as shown in Table V.

From Table V, we can see that speech, music, and environ-
ment sound can be well discriminated. 97.45% of speech sam-
ples are discriminated correctly; only 1.55% speech is mistak-
enly classified into music while 1.00% into environment sounds.
The total accuracy of discriminating these three classes is as
high as 96.51%. If only speech and music are considered, the
accuracy reaches 98.03%. The final accuracy results of different
discrimination types are listed in Table VI.

The experiments have shown that the proposed scheme
achieves excellent classification accuracy.

B. Speaker Change Detection and Segmentation Evaluation

The testing materials used for speaker segmentation evalu-
ations are news video programs from MPEG7 test data, CNN
news, and CCTV news. In total, they are about 2 h. The audio
track in the test set is sampled at 16 kHz, 32 kHz, or 44.1 kHz
in one or two channels. In the experiments, each format audio is
converted to 8 kHz and mono-channel before further processing.

Fig. 15 shows an example of 176-s-long speech. The speech
segment includes four speaker change boundaries at 17 s, 52 s,
86 s, 154 s respectively. Fig. 15(a) shows the initial LSP distance
between each two speech subsegments, the adaptive threshold
and the potential speaker change boundaries. It can be seen that

Fig. 15. Example of speaker change detection algorithm.

TABLE VII
SPEAKER CHANGE DETECTION ACCURACY

the number of potential boundaries are more than real bound-
aries. Fig. 15(b) shows the Bayesian information criterion at the
potential speaker change boundary with speaker model updated
by using as much data as possible. If the value is positive, it is
considered as a real speaker change boundary. There are four
boundaries could be detected from Fig. 15(b).

The performance evaluations of speaker change detection are
described with recall and precision. The results are listed in
Table VII. Because false alarms are more tolerant than missed
boundaries in the video content analysis, we assign higher cost
to missed alarms. It can be noted from the table that the number
of missed alarms is less than false alarms. The overall recall is
89.89% and the precision is 83.66%.

In the experiment, we have found that if there is a laugh
burst between speeches, it is easily detected as speaker change
boundary. This is because we have no more coming data to
be used to compare with the previous one considering the
real-time requirement with low delay. It is also found that the
same speaker in different environment sometimes is easily
detected as different ones. This indicates that our compensation
for the effect of environment conditions and transmission
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channel is insufficient. The problem would remain a challenge
in the speaker recognition field and may have a long way to go.

C. Computation Complexity

We have also tested the computational complexity of our al-
gorithm in term of CPU time. With a Pentium III 667 MHz PC
with Windows 2000, the whole process, including audio seg-
mentation and speaker segmentation, can be completed in about
20% of the length of an audio/video clip. The correlation calcu-
lation in computingLSPmatrix and band periodicity is the most
time-consuming part in our algorithm. After using an optimized
function to compute these features, the time performance has
been increased dramatically. Therefore, our audio classification
and speaker segmentation scheme is able to meet the real-time
requirement in multimedia applications.

VI. CONCLUSIONS

In this paper, we have presented our study on audio classifi-
cation and segmentation for applications in audio/video content
analysis. We have described in detail a novel audio segmenta-
tion and classification scheme that segments and classifies an
audio stream into speech, music, environment sound, and si-
lence. These classes are the basic data set for audio/video con-
tent analysis. The algorithm has been developed and presented
in two stages, which is very suitable for different applications.
We also have introduced a set of new features, such asnoise
frame ratioandband periodicity, which have high discrimina-
tion power among different audio types. Experimental evalua-
tion has shown that the proposed audio classification scheme is
very effective and the total accuracy rate is over 96%. The novel
scheme and new features introduced ensure that the system can
achieve high accuracy even with a smaller testing unit.

We have also developed an improved approach on unsuper-
vised speaker segmentation based onLSPdivergence analysis.
Incremental speaker modeling and adaptive threshold setting
have been described in detail, which makes unsupervised
speaker segmentation possible. Segmental clustering, which
requires less computation, has also been proposed, so that the
algorithm can totally suit the real-time processing in multi-
media application. Experiments have shown that the algorithm
is considerably effective. The overall recall is up to 89.89%,
and the precision is 83.66%.

In the future, our audio classification scheme will be im-
proved to discriminate more audio classes. We will improve the
performance of our speaker segmentation algorithm and extend
it to speaker tracking. We will also focus on developing an ef-
fective scheme to apply audio content analysis to assist video
content analysis and indexing.
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