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Content Analysis for Audio Classification and
Segmentation

Lie Lu, Hong-Jiang ZhangSenior Member, IEEEand Hao Jiang

Abstract—n this paper, we present our study of audio content and application of automatic audio content analysis using some
analysis for classification and segmentation, in which an audio perceptual features. Saunders [4] presented a speech/music clas-
stream is segmented according to audio type or speaker identity. gisiar hased on simple features such as zero-crossing rate and
We propose a robust approach that is capable of classifying and hort-ti f dio broadcast. Th ted that
segmenting an audio stream into speech, music, environment SNOrt-ime energy for ra IC_J roadcast. 1he pa_per repc_)re a
sound, and silence. Audio classification is processed in two steps,the accuracy rate can achieve 98% when a window size of 2.4
which makes it suitable for different applications. The first step of s is used. Meanwhile, Scheiret al. [5] introduced more fea-
the classification is speech and nonspeech discrimination. In this tyres for audio classification and performed experiments with
step, a novel algorithm based on K-nearest-neighbor (KNN) and giftarent classification models including GMM, BP-ANN, and
linear spectral pairs-vector quantization (LSP-VQ) is developed. KNN. Wh . ind fth L 24 t,h
The second step further divides nonspeech class into music, : en usm_g a window o e_s_ame size (2.4 s), _e re-
environment sounds, and silence with a rule-based classification Ported error rate is 1.4%. However, it is found that these simple
scheme. A set of new features such as the noise frame ratio andfeatures-based methods cannot offer satisfactory results particu-
band periodicity are introduced and discussed in detail. We |arly when a smaller window is used or when more audio classes
also develop an unsupervised speaker segmentation algorithm, o, 55 environment sounds are taken into consideration.
using a novel scheme based on quasi-GMM and LSP correlation M th ks h b ducted t h di
analysis. Without a priori knowledge, this algorithm can support a_n_y O, er WOI’. S have been an ucte ) 0 enhance au 1o
the open-set speaker, online speaker modeling and real time classification algorithms. In [6], audio recordings are classified
segmentation. Experimental results indicate that the proposed into speech, silence, laughter, and nonspeech sounds, to segment
algorithms can produce very satisfactory results. discussion recordings in meetings. In the work by Zhang and

Index Terms—Audio classification and segmentation, audio con- Kuo [7], pitch tracking methods were introduced to discriminate
tent analysis, speaker change detection, speaker segmentation.  gudio recordings into classes such as songs and speeches over
music, based on a heuristic-based model. Accuracy of greater
than 90% was reported. Srinivasan [12] proposed an approach

o ) ) to detect and classify audio that consists of mixed classes such
A UDIO classification and segmentation can provide usefyk combinations of speech and music together with environment
information for both audio content understanding anghund. The accuracy of classification is more than 80%.
Worl_<s on_audio content analysis for audio cl_assification a@assiﬁcaﬁon and segmentation. Speech, music, environment
audio retrieval [1], [2], recent works have also integrated audigund, and silence, the basic sets required in audio/video
and visual information [12]-[14] in video structure parsing angontent analysis, are discriminated in a 1-s window, which is
content analysis. In general, the application of audio cont&Korter than the testing unit used in [4] and [5]. Compared to
analysis in video parsing can be considered in two parts. Oger methods, our algorithm is computationally inexpensive
is to classify or segment an audio stream into different sougdlq more practical for different applications. In order to
classes such as speech, music, environment sound, and silefggiove the classification of the four audio classes in term of
the other is to classify speech streams into segments of d'ﬁerﬁeéuracy and robustness, a set of new features incluzing
speakers. In this paper, our research works on these two t%gﬁodicityis proposed and discussed in detail.
will be presented. . __ Another novel work contributed in this paper is the real-time
Intensive studies have been conducted on audio Class'f'catlﬁfbupervised speaker segmentation. We segment a speech
and segmentation by employing different features and methogdgquence into segments of different speakers. Unlike general
In spite of these research efforts, high-accuracy audio classifiggmaker identification or verification, no prior knowledge about
tion is only achieved for simple cases such as speech/music gig number and identities of speakers in an audio clip are
traditional speaker identification algorithm can be used, just as
Manuscript received December 5, 2001; revised July 11, 2002. The associitethe work of Brummer [16]. In video parsing applications,
editor coordinating the review of this manuscript and approving it for publicgha knowledge of speakers is often not available or difficult
tion was Prof. C.-C. Jay Kuo. . Th f it is desirabl £ ised
L. Lu and H.-J. Zhang are with Microsoft Research Asia, Beijing 10008(§,0 acquire. ere o.re, _'t 1S ?Slra e tF) periorm unsupervise
China (e-mail: llu@microsoft.com; hjizhang@microsoft.com). speaker segmentation in audio analysis.
now with Simon Fraser University, Vancouver, BC V6B 5K3, Canada (e-mail; e . . . .
hjiangb@cs. sfu.ca). identification and clustering. Sugiyama [17] studied a simpler
Digital Object Identifier 10.1109/TSA.2002.804546 case, in which the number of the speakers to be clustered was

I. INTRODUCTION
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assumed known. Wilcox [18], in contrast, proposed an alg Digital Audio Stream

rithm based on HMM segmentation, where an agglomerati ¢

clustering method is used when the prior knowledge of speak Feature Extraction

is unknown. Another system [19], [20] was proposed to sep

rate controller speech and pilot speech with the GMM mode l

in addition to the speech and noise detection that were also c Speech/Non-Speech
sidered in the framework. Speaker discrimination from the tel Classification

phone speeches was studied in [21] using HMM segmentatic

However, in this system, the number of speakers was limited Yes No
two. Mori [22] addresses the problem of speaker changes det @

tion and speaker clustering withoatpriori speaker informa-

tion available. Chen [23] also presented an approach to det Soeaker Seamentation Music, Enviroment
changes in speaker identity, environmental and channel cor peaker Seg ! Sound and Silence
’ i 3 . . o Speaker Change Detection cl ification
tions by using the Bayesian information criterion. An accurac assiiicatt
of 80% was reported.

Previous efforts to tackle the problem of unsupervised Fig. 1. Basic processing flow of audio content analysis.

speaker clustering consist of clustering audio segments into

homogeneous clusters according to speaker identity, ba(r:;%_io (LSTER, spectrum fluxSP), LSP divergence distange

ground conditions, or channel conditions. Most methods us S . X
can be classified into two categories. One is based on VQ Boal,nd periodicityBP), andnoise frame ratigNFR). LSP, based

clustering (GMM model), the other one is based on HVND the work presented in [8], is also employed in our unsuper-

model. A deficiency of these models is that they cannot m vrtaed speaker segmentation algorithm. These features will be

e(? . . e . ;
. : . . . -described in detail in this section.
the real-time requirement, since a computationally intensive

iterative operation is utilized.

Real-time speaker segmentation is required in many appliéa- High Zero-Crossing Rate Ratio
tions, such as sp.e.ake'rtracking in real—time news-video Segmenzerq_crossing rateZCR) is proved to be useful in charac-
tation and classification, or real-time speaker adapted Speggh;ing different audio signals. It has been popularly used in
recognition. In this paper, we present a real-time, yet effectiieech/music classification algorithms. In our experiments, we
and robust speaker segmentation algorithm based on LSP COfigje found that the variation ZCRis more discriminative than
lation analysis. Both the speaker identities and speaker NUMBEl o ot value oZCR Therefore, we uskigh zero-crossing
are assumed unknown. The proposed incremental speaker Ups (atio (HZCRR as one feature in our approach.
dating and segmental clustering schemes ensure our method cai, ~p Ris defined as the ratio of the number of frames whose

be [_)rocessed in real-time with Iimi_ted delay. ZCR are above 1.5-fold average zero-crossing rate in an 1-s
Fig. 1 shows the basic processing flow of the proposed agiqow. as

proach that integrates audio segmentation and speaker segmen-
tation. After feature extraction, the input digital audio stream is
classified into speech and nonspeech. Nonspeech segments are 1 =
further classified into music, environmental sound, and silence?ZCRE = 5 Y [sgn(ZCR(n) — 1.5 wZCR) +1] (1)
while speech segments are further segmented by speaker iden- n=0
tity. Detail processing will be discussed in the remaining sec-
tions. wheren is the frame indexZCRn) is the zero-crossing rate
The rest of the paper is organized as follows. Section Il digt thenth frame, NV is the total number of frameswvZCRis
cusses in detail the audio features used in audio segmentatlmaverag€CRin a 1-s window; and sgn[.] is a sign function,
and speaker segmentation. Section Il presents the audio clagsspectively.
fication and segmentation scheme. In Section |V, speaker segi general, speech signals are composed of alternating voiced
mentation algorithm is proposed. In Section V, empirical expesounds and unvoiced sounds in the syllable rate, while music
iments and performance evaluation of the proposed algorithsignals do not have this kind of structure. Hence, for speech
are presented. signal, its variation of zero-crossing rates W CRR will be
in general greater than that of music, as shown in Fig. 2.
Fig. 2illustrates the probability distribution curvest# CRR
Il. FEATURE ANALYSIS for speech and music signals. The curves are obtained from our
audio database using 1-s windows. It can be seen that the center
In order to improve the accuracy of classification and segf HZCRRdistribution of speech segment is around 0.15, while
mentation for audio sequence, it is critical to select good fellZCRRvalues of music segments mostly fall below 0.1, though
tures that can capture the temporal and spectral characteristiese are significant overlaps between these two curves. Sup-
of audio signal or the characteristics of speaker vocal tract. Wese we only usélZCRRto discriminate speech from music
select following features to classify or segment audio streaamd use the cross-point of two curves in Fig. 2 as a threshold,
high zero-crossing rate ratiHZCRR, low short-time energy the discrimination error rate would be 19.36%.
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Fig. 2. Probability distribution curves 6fZCRR (a) Speech and (b) music. Fig. 4. Spectrum flux curve (0200 s is speech, 201-350 s is music, and
351-450 s is environment sound).
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whereA(n, k) is the discrete Fourier transform of théh frame
Fig. 3. Probability distribution curves &fSTER (a) Speech and (b) music. of input signal

B. Low Short-Time Energy Ratio oo '
A(n, k) = Z z(m)w(nL — m)e I Gr/L) km| (3 2y

m=—00

Similar toZCR we also selected the variation, instead of the
exact value, of short-time energy as one component of our fea-
ture vector. Here, we udew short-time energy ratiLSTER
to represent the variation of short-time ener§yg. andz(m) is the original audio datay(m) is the window func-

LSTERis defined as the ratio of the number of frames whogi®n, L is the window lengthK is the order of DFTN is the
STEare less than 0.5 time of average short-time energy in a 1082l number of frames antlis a very small value to avoid cal-
window, as the following: culation overflow.

In our experiments, we found that, in general, 8fevalues of
No1 speech are higher than those of music. In addition, the environ-
LSTER — — Z sgn(0.5 awSTE-STE(n)) + 1]  (2) ment sound is among the highest and changes more dramatically
than the other two types of signals. Fig. 4 shows an example
of spectrum flux of speech, music and environment sound. The
speech segment is from 0 to 200 s, the music segment is from
201 to 350 s and the environment sound is from 351 to 450 s.
window Therefore,SF is a good feature to discriminate speech, envi-
i ronmental sound and music. This feature will be used in both

LSTERIs an effective feature, especially for discriminatin
P y eech/nonspeech classification and music/environment sound
speech and music signals. In general, there are more S|Ien & sification.

frames in speech than in music; as a resultUB&ERmeasure

of speech will be much higher than that of music. This can be
seen clearly from the probability distribution curvesL&TER

for speech and music signals, as illustrated in the Fig. 3. It isBand periodicity BP) is defined as the periodicity of a sub-
shown thal. STERvalue of speech is around 0.15 to 0.5, whiléand. It can be derived by subband correlation analysis. Here,
that of music is mostly less than 0.15. Based on Fig. 3, if we uae have chosen four subbands: 5®00 Hz, 1008-2000 Hz,

the cross-point of twh STERcurves as a threshold to discrim-2000~3000 Hz, and 30004000 Hz, respectively. The period-
inate speech from music, the error rate would be only 8.27%ity property of each subband is represented by the maximum
Therefore LSTERis a good discriminator between speech anldcal peak of the normalized correlation function. For example,
music. for a sine wave, it8P is 1; but for white noise, itBP is 0.

n=0

whereN is the total number of frameS,TEn) is the short-time
energy at theith frame, andavSTEs the averag&TEin a 1-s

. Band Periodicity
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wherer; ;(k) is the normalized correlation function;is the
band index, angl is the frame indexs(n) is the subband digital

signal of current frame and previous frame, whern= 0, the

data is from the current frame; otherwise, the data is obtainedn our implementation, only the periodicity of the first two

from the previous framel is the total length of a frame. bandsbp, andbp, and the sum of the four bands’ periodicity,
We denote the maximum local peak as; (k,), wherek, bpSumare used to discriminate music and environment sound.
is the index of the maximum local peakjs the band index
andj is the frame index. That is;_;(k,) is band periodicity

of theith sub-band of thgth frame. Thus, the band periodicity Noise frame ratigNFR) is defined as the ratio of noise frames
is calculated as in a given audio clip. A frame is considered as a noise frame if
the maximum local peak of its normalized correlation function

Fig. 7. Probability distribution curves &fFR (a) Music and (b) environment
sound.

E. Noise Frame Ratio

1 N is lower than a preset threshold. TRER value of noise-like
pi = Z i, i ( i=1,...4 (4.2) environment sound is higher than that of music, as illustrated in
j=1 Flg 7.

Fig. 7 shows the probability distribution curves WFR for
wherebp; is the band periodicity ofth sub-band) is the total music and environment sounds from our audio database. For
frame number in one audio clip. music, almost ndNFR value is above 0.3; however, for envi-

Fig. 5 shows an example of band periodicity comparison bE&inment sound, the portion &fFR values that are higher than
tween music and environment sounds. The music segmen®ig is much higheNFRreally depends on how noisy the signal
the example is from 0 to 300 s, while the remaining part is envf- Data shows some environment sound is more noise-like.
ronment sounds. The vertical axis represents different frequency .
sub-bands. Itis observed that the band periodicities of music ?r:el‘SP Distance Measure
in general much higher than those of environment sound. ThisLinear spectral paird SPJ are derived from linear predictive
is because music is more harmonic while environment soundcefficients (LPC). Previous researches have shownli§&t
more random. Thereforband periodicityis an effective feature has explicit difference in each audio class [10]. It is also found
in music/environment sound discrimination. thatLSPis more robust in the noisy environment [14].

To show clearly the discrimination power of this feature, a K—L distance is used here to measure lt&® dissimilarity
probability distribution curve dband periodicityin the first sub- between two 1-s audio clips [8]
band for environment sound and music is illustrated in the Fig. 6.

From Fig. 6, it can be obviously seen that the centéppivalue D = %tr [(CLSP —Cgsp) (C;ﬁ — Cgslp)]
of environment sound is around 0.5, whijg value of music is 1 1 -
around 0.8, there is a considerable difference between them. +3 {7 [(Csp + Clsp) (ursp —usp) (wrsp — usp) ] 5)
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Fig. 8. LSP curve (0-200 s is speech; 201-350 s is music and 351-450 s is
noisy speech).

Fig. 9. LSP divergence distance map.

whereCsp and Csp are the estimatetdSP covariance ma-

trices,uzsp andugp are the estimated mean vectors, from twg'easuring the difference between speakers. An example of

audio clip, respectively. In real implementation, ten-ordspP LSPdistance between different speakers is illustrated in Fig. 9.

is extracted from each frame and then the covariance and meahig- 9 shows the dissimilarities between any two 3-s speech

are estimated from each audio clip. subsegments in a 180-s-long speech. One threshold is used to
The distance is composed of two parts. The first part is dgansformD(p, ¢) to binary value (0, 1). Value 0 is represented

termined by the covariance of two segments and the secon®¥sblack pixel, while value 1 is represented by white pixel. It

determined by covariance and mean. Because the mean is e&$ify Pe clearly seen that the figure is symmetric, and there are

biased by different environment condition, the second partis f8Hr Speakers in this speech segment.

considered and only the first part is used to represent the dis-

tance, similar to the work [8]. It is also similar to the cepstral lll. AUDIO CLASSIFICATION AND SEGMENTATION

mean subtractionGM§ method used in speaker recognition \jith the features presented in the previous section, a two-step

to compensate the effect of environment conditions and trargheme is proposed to classify audio clips into one of the four
mission channels. Here, it is called divergence shape distarggdio classes: speech, music, environment sound and silence. At

which is defined by the first step, an input audio stream is classified into speech and
nonspeech segments by a K-nearest-neighkhiNj classifier
D= %tr [(CLSP — Csp) (Cs_Pl — CL_slp)] . (6) andlinear spectral pairs-vector quantizatib8P-VQ analysis.

In the second step, nonspeech segments are further classified
This dissimilarity measure is effective to discriminate speeéﬂto music, gnwronmental sounq, aqd silence py a ruIe-bgsed
scheme. This two-step scheme is suitable for different applica-

and noisy speech from music. Fig. 8 shows an examplsS§f . . o . s
distance between audio data and speech model obtained fll'onqs and is capable of achieving high classification accuracy.
ased on these classification results, the segmentation of an

our training data. The speech segment is from 0 to 200 s, thé

music segment is from 201 to 350 s and the noisy-speech St%cg:c_jlotﬁtrearréls achlgv?d. P]? stgroce_ls_ﬁln%s;:h:en;e IS tthen z;:oplll(ed
ment is from 351 to 450 s. Obviously, th&Pdistance is dif- urther requce misclassification. 1ne detafled system bloc

ferent among these classes. The distance between speech dd%%{am .Of the pro.pos.ed audio classification and segmentation
eme is shown in Fig. 10.

n h model is the smallest; while the distan W . .
and speech model is the smallest e the distance bet ég?n extracting audio features for our classification scheme, all

music and speech model is the largest. input signals are downsampled into 8-KHz sample rate and sub-
LSPdivergence shape is also a good measure to discrimingig"" 59 P P

between different speakers. In our algorithm, we will use thlssquent!y _segmented Into subgegmeqt; bY 1-s w.|n.dow. This 1-s
io clip is taken as the basic classification unit in our algo-

feature to detect potential speaker change points with a 1-s R . i Lo T
and a 3-s window. rthms. If there are two audio types in 1-s audio clip, it will

Denote that th& SPcovariance fopth s and;th s speech clip Lohe ;:I(z;\s/is(;fleddi;f)tfhertd(;rgrr:]e;nrt] arl:d\'lo rﬁ);pe.ir;rhfr;nlﬁf ((:)I:]pv:;:‘;:
is C, andC,, respectively. According to (6), the dissimilarity € € orty onoveriapping '

measure of speaker models between these two speech cIips%% Hz bandwidth expansion is applled. A fegturg vectoris ex-
be defined as tracted based on these 40 frames in 1-s audio clip to represent

the window. We use those features presented in the previous sec-
1 . tion to represent the characteristics of each 1-s audio clip.
D(p, q) = tr[(C, = Cg)(Cy = C)]- @)

p
A. Speech/Nonspeech Discrimination
In general, if the dissimilarity is larger than a threshold, The first step of our audio classification scheme is to discrim-
these two speech clips could be considered from two differénaite speech and nonspeech segments. In this scheme, we first
speakers. Though it is a simple scheme, but it is capableagply aKNN classifier based ohigh zero-crossing rate ratio
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Fig. 11. Final speech/nonspeech discrimination.

Fig. 10. Audio classification and segmentation system diagram.

the speech codebook and th&P covariance of the testing
audio clip is then compared. If the distance is smaller than a
threshold, the audio clip is classified as speech; otherwise, it is
Qlassified as nonspeech.

(HZCRR, low short-time energy ratigLSTER, andspectrum
flux (SH to perform a fast preclassification of speech and no
sp_eech. Then_, WE propose a re_fme scheme basedSBanal-_ The procedures for final classification of speech and non-
ysis [8] to refine the classification results and make the flng eech are illustrated in Fig. 11

deC|s_|on. Empirical exper}ments mdu;ate that this scheme CaAs shown in Fig. 11, the result of preclassification is exam-
get higher accuracy than just combining every feature.

1) Preclassification: Due to the discriminati dined by measuring the distance of an audio clip from the speech
) Prec assification bue 1o the discrimination power and ., ,ye| codebook. We denoted the distanc®a®epending on
low computational cost, we udggh zero-crossing rate ratio

: . ’ the preclassification result, two thresholds are used in making
low short-time energy ratigndspectrum flusto form a feature

L the final decision. If the preclassification result is speech, fhen
vector,_{HZCRR LSTER SF}, for fast precIaSS|f|gat|on. How- i compared again$hreshold.. If D is greater thaithreshold.,
ever, since none of the three features can achieve a 100%

A& audio clip is classified as nonspeech. Otherwisés com-

based orkKNN classifier and VQ analysis is proposed. Eﬁi{la%:gg;gfhreshold, and the same rule is applied to make

Suppose the generated feature vectors satisfy Gaussian MXiare is some guide to settifhreshold and Threshol@.
ture model, we can construct a ”””.“b_er of speech codeb(_) posing thd SP distance between speech clip and speech
and nonspeech codebooks t_)y our training database. The trainiggepnook satisfies a Gaussian distributiof(ys,, o, ), almost
data for codebook generation is composed of four audio $% value (about 0.03%) will be larger than, + 30,. If the
quences of abdw h from MPEG'7 test set CD1 and the OtheEiistance of one clip is larger than this value, the clip is most
100 environment sound clips of each about 4 s long{MN-2

o ] , ... likely is a nonspeech. Thus tAdreshold can be set as
classifier is used in our scheme to perform audio preclassifica-

tion. ] o ] Thresholdl = u, + A1 - 0 (8.1)

This preclassification scheme works well in most cases and
is fast because of its computational simplicity. An exception {§here ), is a coefficient that is usually set to be three.
when the scheme is applied to signals of mixed audio types.gimilarly, supposing the.SP distance between nonspeech
As discussed in Section IHZCRR LSTER and SF charac- clip and speech codebook satisfies Gaussian distribution
terize the fluctuations of zero-crossing rate, short-time energyy,,,  +,,), then theThreshol@ can be set as
and spectrum. However, these features of noisy speech signals
are similar to those of music. Furthermore, these features of Threshold2 = u, — Ao - oy (8.2)
some music signals with the drum sounds as well as some en-
vironment sounds are often similar to those of speech signaldiere), is another coefficient that also usually set to be three.
Since preclassifier alone can not assure high classification accuin general, Threshold. is greater thaihreshol@. Thus, we
racy, we proposed a refining scheme to solve the problem dean prevent too many preclassification results from being con-
to mixed audio signals. verted incorrectly.

2) Refining SchemeAs presented in Section ILSPis a In practical applications, four speech model codebooks
robust feature in the noisy environment for effective discrimare generated from training data using the Linde—-Buzo-Gray
nation between noisy speech and music, though it is relativélyBG) algorithm [11]. The training data include speeches by
more computationally complex. Therefore, this feature wifferent speakers at different ages and of different genders, in
utilized to refine the preclassification results. In our schemearious recording conditions. The dissimilarity of a test audio
we obtain a speechSP covariance matrix model as a speechlip is defined as the minimum distance between the clip and
codebook, through a training process. The distance betweka four speech model codebooks.
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B. Music, Environment Sound, and Silence Classification
Scheme

Nonspeech is further classified into music, environment
sound, and silence segments. In our scheme, silence detectic
is performed first. Then, for nonsilence segment, it is classified
into music or environment sound by applying a set of rules.

1) Detecting Silence:Silence detection is performed based ¢/ .0 Yes No
on short-time energy and zero-crossing rate in 1-s windows. If
the average short-time energy and zero-crossing rate is lowe
than a threshold, the segment is classified as silence; otherwis¢ ]
itis classified as nonsilence segment. This simple scheme work: Environment Music
well in our applications. sound

2) Discriminating Music From Environment Sound: Band Fig. 12. Music/environment sound discrimination process.
periodicity (BP), spectrum flux(SF), and noise frame ratio
(NFR) are used to discriminate music from environment .
soundsBP acts as the basic measure. As shown in Fig. 5, the | Nen. the optimal threshold$'6sp, Thyrr, Thsr) can be
band periodicity of music is greater than that of environmeﬁf(hauswely_ sear_ched n the_ abov_e space. In actual implemen-
sounds in most cases. However, it is noted that there are certafiPn: we discretize ea(_:h d'm‘f’T‘S"’.” into 40 values. For e?Ch
degree of overlaps in this feature distribution, which can ledg'ue, we can get the .m|sclassn‘|cat|on result. The value which
to potential classification errors. To avoid this probléf,and resulted in least error is taken as an optimal threshold.

NFR are also used. From Fig. 4, tis# of environment sound

is much higher than that of music in most of cases, while ﬁ%
Fig. 7, there is almost nlFRvalue of music higher than 0.35.  Final segmentation of an audio stream is achieved by clas-
Hence, these facts are utilized in our algorithm according to teying each 1-s window into an audio class. Meanwhile, con-

following rule. sidering that the audio stream is always continuous in video

First, if any of thebp,, bp,, or bpSumof an audio clip is Program, it is highly impossible to change the audio types too
lower than the predefined thresholds, the clip is considered aguldenly or too frequently. Under this assumption, we apply
segment of environment sounds. Otherwise, it goes to next stéfoothing rules in final segmentation of an audio sequence. The

Then, ifNFRof a clip is greater than a given threshold, thist rule used is
clipis cIas§ified as .noise_—like environment sqund. Ot'herwise tRule 1 if (s[1] # s[0]&&s[2] = 5[0]) thens[1] = s[0]
goes to third step, in whicBF of the window is examined. If
the SFis greater than a threshold, a clip is also classified as emhere a 3-s sequence is considergd], s[1], s[2] stands for
vironment sound. This rule is useful especially for some strotige audio type of previous 2-s, previous second and current
periodicity environment sounds such as tone signal wigize second, respectively. This rule implies that if the middle
and NFR are similar to that of music signals. Ongpectrum second is different from the other two while the other two
flux can distinguish them. are the same, the middle one is considered as misclassifi-
Finally, music segments can be segmented by excludiggtion. For example, if we detect a pattern of consecutive
above conditions. This is because B values of for music sequence like “speech—-music—speech,” it is most likely the

signals are usually higher, bi4FR and SF values are lower, sequence should belong to speeches. But for sequence such
compared to environmental sound. as “speech—music-environment sound,” the middle second

The decision process is illustrated in Fig. 12, whévep, Can either be correct or incorrect classification. We can also
Thyrr, andThsy are thresholds for the featuB®, NFR and ©Optionally rectify the middle second as the previous or the
SF. respectively. succeeding audio type. In our approach, we will uniformly

The optimal thresholds could be obtained by searching th%c;if)ilsthe middle second according to its previous audio type.

whole feature space in order to minimize the global misclad’
sification. However, it will be very time-consuming. In fact,p,1e 2 if (s[1] # s[0]&&s[2] # s[0]&&s[2] # s[1])

the thresholds could be constrained in a certain region when

searching the optimal one according to the feature distribution thens[1] = s[0].
characteristics. Suppose the mean and covariance of each fe
ture of music aréqu, UBP), (/LNFR-/ UNFR)y and(ﬂgp, USF)y
respectively, the constraining regions are set as

Yes .
Environment

sound

sound

. Final Segmentation and Smoothing

ft should be noted that rules 1 and 2 are not applicable to
silence second, since silence is highly possible to appear in 1-s
window. That is, the sequence such as “speech-silence—speech”
is accepted. Consequently, by combining the above three rules,
Thpp € [upp — 30pp, upp] (9.1) the final rule becomes

Thyrg € [HNFBH UNFR + 3UNFR] (9.2) Final Rule if (8[1] 75 S[O]&&S[l] 75 SILENCE &&8[2]

Thsr € [usr, psr + 3osF]. (9-3) # s[1]) thens[1] = s[0].
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Speech stream Let D(i, j) denote the distance between tith and jth
v speech subsegment, as defined by (8). A potential speaker
Front-end Process, change is detected betweéh and(: + 1)th speech subseg-

feature extraction,
and Pre-segment

No
potential break?

ment, if the following conditions are satisfied:
D@, i+1)>D(i+1,i+2),
D(i,i+1)>D(i—1,1), D(i,i+ 1) > Th; (10)
whereTh; is a threshold.

Yes X i .
: The first two conditions guarantee a local peak exists, and
Compare current sub- Clustering and L. .
segment speech with the|g Update Current|  the last condition can prevent very low peaks from being de-
last speaker model Speaker Model tected. Reasonable results can be achieved by using this simple
¢ criterion. However, the threshold is difficult to sepriori. If the
No i i i

Yes Really break? threshold is too small, false detection would be easily generated.

False detection could be reduced by increasing the threshold,
Positive Speaker change False Speaker Change with the expense that some positive speaker change boundaries

could be missed. The threshold is affected by factors such as
insufficient estimate data and different environment conditions.
For example, from our experiments, we found that the distance
IV. SPEAKER SEGMENTATION between speech subsegments will increase if the speech is in a

If an audio segment belongs to speech, we further segmgﬂ{sy environment. Therefore, the threshold should be increased

it according to the speakers, i.e., the speaker transitions Fgordmgly In & noisy environment. To obtain a more robust

detected in the speech segments. As mentioned in Sectionf r?)ivhsmd, an automatic threshold setting method is proposed as

o o e e o agortm, he reshold s utomatcally et according
algorithm. The algorithm is mainly composed of three moduletgq the previousV SUCCGSSIYG distances, i.e.,

They are front-end process module, segmentation module, and 1 & ) )

the module for clustering and updating speaker model. Thi=oa-+ ZO D(i—n—1,i-n) (11)

The input speech stream is first segmented into 3-s subs:eg-

Fig. 13. Flow diagram for speaker change detection.

ments with 2-s overlapping. That is, the step or temporal rél! ereN is the number of previous distances used for predicting

olution of the segmentation is 1 s. Each subsegment is prep -EShOI_d’ and is a coefficient used as an amp"f'?“ We set
= 1.2 in our algorithm. The threshold determined in this way

cessed by removing silence and unvoiced frame. Presegmerit is

processed to find potential speaker change point. If the bound?fgks safisfactory in different conditions. However, the false de-

of a potential speaker change is not detected, current speaf Fions can still exist due to the insufficient data in estimating

model is updated incrementally. Otherwise, Bayesian inform e speaker model accurately from only one short speech sub-

tion criterion @IC) is employed to verify the correctness of deSegment. The estimated speaker model would be biased in this

tected boundary. ase. .
4 In order to solve this problem, we should use as much data as

possible to update speaker model. A more accurate refinement

_ . o . method is proposed to refine the above potential speaker change
The input audio stream is first downsampled into 8 KHZyoundaries.

16 bits, mono channel, and preemphasized, a common format
as used in the audio classification process. The speech strea@.isncremental Speaker Model Updating
then divided into small subsegments by a 3-s window with 2-S|n order to collect as much data as possible to estimate

oyerlapping.lThe fsubsegmint isfurtherdividedfinto nonoverlagsq axer model more accurately, we utilize the detection results
ping 25-ms-long frames. The most important feature thractgfi potential speaker change. If no potential speaker change
from each frame it SPvector. Other extracted features 'nd“d%oint is detected, the next subsegment is assumed as the same
short-time energyTE and zero-crossing ratl&CR. They are  gpoarer as the previous one. Thus, we update the current

used to discriminate silence frames and unvoiced frames,Wh'gi%aker model using this available new data, as shown in
should be excluded when estimating speaker model. Fig. 14(b) ’

A. Front-End Processing

GMM-32 is used to model a speaker. The model is estab-
lished progressively as more and more data become available.
At this step, speaker model is extracted for each subsegménitjally, there is no sufficient speaker data, thus GMM-1 is used.
LSP divergence distance is used to measure the dissimilariyhen more speaker data are available, the model will grow up

between each two neighboring speaker models at each time glwiGMM-32 gradually.

as shown in Fig. 14(a). Thus, if a local maximum is found in In general, EM algorithm is used to estimate the Gaussian
the LSP distance series, and furthermore if it is larger than mixture models. However, two problems will be introduced.
predefined threshold, it is taken as a potential speaker chamgest, it causes storage overhead since all feature data are
point. required to be saved in memory or disk. Second, the recur-

B. Potential Speaker Change Detection
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|
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(c) Potential Boundary Refinement

Fig. 14. lllustration of speaker change detection.

sive process of EM algorithm could not guarantee real-tineach component is obtained from one speaker segment. Com-
processing. Therefore, we introduce an alternative clusteribiming these Gaussian models would form a quasi-Gaussian
method which is less time consuming. Although the accuraayixture model. The weight of each Gaussian model is set by
is not as high as the EM algorithm, it works well most of thé¢heir corresponding number of training data. Supposing the
time. The detail algorithm is described in the following. guasi-Gaussian mixture model for a speaker is GMM-s, in
Suppose the current speaker modgl ~ N(u, C') is ob- which each Gaussian modél; is estimated byN; feature
tained from the previougM — 1) subsegments and there is navectors ¢ = 1,...s). Then, the weightv; of theith Gaussian
potential speaker change point betwédd — 1)th andMth modelG; is computed by
speech segment, it implies these segments belong to the same
speaker. Thus, we update the current speaker m@deising wi = Ni/N (14)
the feature data of thi/ th segment. If the model @ffth speech whereN = Zz’szl N; is the total number of feature vectors.

segmentisV(um,, Cy,), the current speaker model could be up- By using this method, the speaker model will grow from

dated as GMM-1, GMM-2, up to GMM32. When the GMM32 is
r_ N o N, n N - Ny, reached, the updating of the speaker model is terminated. This
N + N, N+N,, ™ (N+N,,)? method (quasi-GMM by segmental clustering) is slightly dif-

T ferent from the original GMM. It tends to neglect low-weighted
(= o) (= o)™ (12) components ina GMM and is less accurate than GMM obtained
whereN andN,, is the number of feature vectors used for modising EM algorithms. Nevertheless, it still can capture the most
eling N(u, C) andN (u,, Cy,), respectively. important components in GMM, and furthermore, real-time
The third part of (12) is determined by the means. Howevegquirement is met due to its computational simplicity. Through
the means can be easily biased by different environment conglir empirical experiments, it could achieve reasonable accu-
tions. In practice, we ignore the mean part of (12) to compensaégy.
the effect of different environment conditions and transmission

channel. Then, (12) is simplified as D. Speaker Change Boundary Refinement
r_ N Ny, There are false positives in the potential speaker change
C'= C+ Cn- (13 ; , X _ . ) ;
N+ Np, N+ Np, points obtained with the algorithms described in Section IV-B.

The above procedure is looped till the dissimilarity betweefo remove false positives and detect only real speaker change
the speaker models before and after updating is small enodgiundaries, a refinement algorithm is used. The algorithm is
or a potential speaker change point is met. The dissimilarityased on the dissimilarity between the current segment and the
is also measured by tHeSPdivergence shape distance. Wheprevious speaker model obtained from the segments before the
the dissimilarity is small enough, it is assumed that the currerurrent potential boundary. In this step, Bayesian information
Gaussian model is estimated accurately with sufficient trainirgiterion (BIC) [23], [24] is used to measure the dissimilarity,
data. In other words, it is not necessary to continue updéting as shown in Fig. 14(c).

The next Gaussian modek; 1, is initiated and updated with  Suppose two Gaussian model from two speech clips are
the new data using the same method. N(uy, Cy)andN (uq, C9), the number of data used to estimate

For one speaker, several Gaussian models will be estimatkdse two models ar&; and N-, respectively; and when one
by the above method. This is called segmental clustering simBaussian Model is used to estimate these two speech clips,



LU et al: CONTENT ANALYSIS FOR AUDIO CLASSIFICATION AND SEGMENTATION

the model isN(u, C). The BIC difference between the two
models is

BIC(C,, Cs)
= % ((N1 + N2) IOg|C| — N1 10g|01| — N2 10g |02|)
— X (d+3d(d+1))log(Ny + No) (15)

where) is a penalty factor to compensated for small size cases,
andd is the feature dimension. Generally= 1.

According to BIC theory, ifBIC(Cy, C5) is positive, the
two speech clips could be considered from different sources
(speakers). The advantage of using BIC is that it is threshold
free.
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TABLE |

SPEECH MuUSIC, ENVIRONMENT SOUND CLASSIFICATION ON

BASELINE SYSTEM (UNIT: 100%)

Discrimination Results

Total

Sound TyPe Nymber Speech Music ENV
Sound
Speech 100 95.46 2.81 1.73
Music 100 5.24 88.39 6.37
Environment 50 1525 2287  61.88

Sound

TABLE I

BASELINE CLASSIFICATION RESULT ON PURE SPEECH AND
Noisy SPEECH(UNIT: 100%)

Suppose at the potential speaker boundary, the model of

Total Discrimination Results

previous speaker is GMM-s, in which each Gaussian model is Sound Type . Sucech T
N(u;, C;) (i = 1, ... s); and the model of current segment mDer Speec e
is N(u, C). Then the distance between them is estimated as Pure Speech 100 96.74 3.26
the weighted sum of the distance betwe€é(u, C') and each Noisy speech 100 73.62 26.38

]V(’U,i7 Cl)

S TABLE Il
D=w,- § : BIC’(C,L-, C). (16) CLASSIFICATION ON PURE SPEECH AND NOISY SPEECH
— AFTER REFINEMENT (UNIT: 100%)
i=

Total Discrimination Results

This distance does not take the GMM-s as an integral one, Sound Type
, kg YP® Number ~ Speech __ Music
but as several independent components. However, it is still rea- P
sonable since the GMM-s model is obtained from segmental Pure Speech 100 98.23 177
clustering. That is, each component Gaussian model is obtained Noisy speech 100 85.18 14.82

from an independent segment. The BIC distance considering
one component of GMM-s can be used as the similarity confi-
dence between the current segment and one segment of the pagdwidth. The music content in this data set is mainly songs
vious speaker. Thus, the weighted sum (average distance) @8f POp music. Such music contents are difficult for most audio

be used to represent the distance between current segment@@gfifiers. The background sound in the database include many
previous speaker. types, such as aviations, animals, autos, beeps, cartoon, combat,

Based on the aforementioned BIC theoryDif> 0, it must crowds, and so on. Two hours of data was used for training, and

be a real speaker change boundary. If a candidate is not a A4l data was used for testing. The testing data includes about
boundary, the speaker data is used to update the speaker m866pP s speech, 3400 s music, and 1200 s environment sounds.
following the method previously described. The training data is approximately half of the testing data. In our
LSP divergence distance or Bayesian information criteriofXperiments, we set 1 s as atest unit. If there are two audio types
is not uniformly used at potential speaker boundary detecti#fha 1-s audio clip, we will classify it as the dominant audio type.
and refinement. The reason is as follows. At the step of poten-We first implement a baseline system which uses the feature
tial speaker change detection, the data is too small to estimgt&@ CRR LSTER SF) with clustering and thé&C NN method, as
a model accurately. Bayesian information criterion is found @escribed in the Section Ill. The performance data are listed in
be vulnerable by different words or different speakers, so fal$able I.
alarms can be easily generated. At the step of potential boundary his baseline system works well for speech/nonspeech dis-
refining, the model is more accurate; moreover, BIC could coritimination, but does not work well on environment sound. In
pensate different training data and is threshold free, witle  our experiments, we also found that the baseline system has

divergence distance depends on thresholds. It is more efficigf@trse performance on noisy speech than pure speech. About
for BIC in this step, as shown in our experiments. 26.38% noisy speech is discriminated as music, as shown in the

Table II. This is because some features of noisy speech are very
similar to those of music, in particular the pop music.

These facts show that the base system is only effective as a
preclassification process, and more improvements are expected.

The evaluation of the proposed audio classification and setherefore, we propose to use new features to increase the clas-
mentation algorithms have been performed by using an audification performance of noisy speech and environment sound.
database composing of data from MPEG-7 test data set CD1, Affer the refinement scheme hySPdivergence shape, the per-
news, movie clips, and some audio clips from the Internet. THigrmance is improved significantly, as shown in Table III.
database includes speech in various conditions, such as in recowifter employing our music and environment classification
studios, speeches with telephone (4 kHz) bandwidth and 8 kkizheme, the performance for environment classification is also

V. EXPERIMENT RESULTS
A. Audio Classification and Segmentation Evaluations
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TABLE IV 30 I Potential Boundery
SPEECH MusIC, ENVIRONMENT SOUND CLASSIFICATION 25 b LSP distance
BEFORE SMOOTHING (UNIT: 100%) == = Threshold
[}
Q
Total Discrimination Results §
Sound Type Number S h Music 2
P Sound
Speech 100 96.73 1.89 1.38
Music 100 3.68 91.34 4.98
Eovionment 150 1149 924 7927
Sound
1200
TABLE V 800

FINAL RESULT OF SPEECH MUSIC, ENVIRONMENT SOUND
CLASSIFICATION (UNIT: 100%)

N

(=]

(=}
T

B];C Criterion
o

] . i . —— , .
Total —Discrimination Results I 25|I 50 75| 100 125| 150 I 115
400 |
Sound Type Number Speech Music ENV
Sound -800 k
Speech 100 9745 1.55 1.00
-1200
Music 100 316  93.04 3.80 Time Index(s)
Environment
Sound 100 1049 5.08 84.43 Fig. 15. Example of speaker change detection algorithm.
TABLE VI TABLE VI
THE TOTAL ACCURACY RESULT FORDIFFERENT DISCRIMINATION TYPE SPEAKER CHANGE DETECTION ACCURACY
Discrimination Type Accuracy :
B de.eo Original Detected Miss False Recall Precision
Speech/music 98.03% Clip
0 100% 100%
Speech/music/environment sound 96.51% ! > > 0 ? ’

100% 84.21%
89.46%  81.25%
83.78%  81.58%
88.89%  82.76%

2 32 38
3 29 32
improved. The total performance of our system is showed i 4 37 38
Table IV. 5 27 29
6
7

Considering the continuity of audio stream, a smoothin 41 41 8537%  85.37%
scheme is processed. The performance has been further 17 19 94.12%  84.21%
proved as shown in Table V. Al 188 202 19 23 89.89%  83.66%

From Table V, we can see that speech, music, and envircr=
ment sound can be well discriminated. 97.45% of speech sam-
ples are discriminated correctly; only 1.55% speech is mistae number of potential boundaries are more than real bound-
enly classified into music while 1.00% into environment soundgries. Fig. 15(b) shows the Bayesian information criterion at the
The total accuracy of discriminating these three classes is@siential speaker change boundary with speaker model updated
high as 96.51%. If only speech and music are considered, fieysing as much data as possible. If the value is positive, it is
accuracy reaches 98.03%. The final accuracy results of differ@ghsidered as a real speaker change boundary. There are four

- N W N WO
W AN L 9N

discrimination types are listed in Table VI. boundaries could be detected from Fig. 15(b).
The experiments have shown that the proposed schemge performance evaluations of speaker change detection are
achieves excellent classification accuracy. described with recall and precision. The results are listed in

. ) . Table VII. Because false alarms are more tolerant than missed

B. Speaker Change Detection and Segmentation Evaluation, \nqaries in the video content analysis, we assign higher cost

The testing materials used for speaker segmentation evatumissed alarms. It can be noted from the table that the number
ations are news video programs from MPEG?7 test data, CNifimissed alarms is less than false alarms. The overall recall is
news, and CCTV news. In total, they are about 2 h. The aud8.89% and the precision is 83.66%.
track in the test set is sampled at 16 kHz, 32 kHz, or 44.1 kHzIn the experiment, we have found that if there is a laugh
in one or two channels. In the experiments, each format audidigrst between speeches, it is easily detected as speaker change
converted to 8 kHz and mono-channel before further processibgundary. This is because we have no more coming data to

Fig. 15 shows an example of 176-s-long speech. The spebéehused to compare with the previous one considering the
segment includes four speaker change boundaries at 17 s, 52al-time requirement with low delay. It is also found that the
86 s, 154 srespectively. Fig. 15(a) shows the initial LSP distansame speaker in different environment sometimes is easily
between each two speech subsegments, the adaptive threstietdcted as different ones. This indicates that our compensation
and the potential speaker change boundaries. It can be seenftivathe effect of environment conditions and transmission
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channel is insufficient. The problem would remain a challenge[4]
in the speaker recognition field and may have a long way to go.[S]

C. Computation Complexity ]
We have also tested the computational complexity of our al-
gorithm in term of CPU time. With a Pentium Il 667 MHz PC [7]
with Windows 2000, the whole process, including audio seg-[g]
mentation and speaker segmentation, can be completed in about
20% of the length of an audio/video clip. The correlation calcu-
lation in computind_.SPmatrix and band periodicity is the most
time-consuming part in our algorithm. After using an optimized[10]

function to compute these features, the time performance h
been increased dramatically. Therefore, our audio classification
and speaker segmentation scheme is able to meet the real-titdel
requirement in multimedia applications.

(13]

VI. CONCLUSIONS [14]

In this paper, we have presented our study on audio classifi-
cation and segmentation for applications in audio/video contenis;
analysis. We have described in detail a novel audio segmenta-
tion and classification scheme that segments and classifies Ay
audio stream into speech, music, environment sound, and si-
lence. These classes are the basic data set for audio/video con-
tent analysis. The algorithm has been developed and present@a
in two stages, which is very suitable for different applications.
We also have introduced a set of new features, suaoae  [18]
frame ratioandband periodicity which have high discrimina-
tion power among different audio types. Experimental evaluagigj
tion has shown that the proposed audio classification scheme is
very effective and the total accuracy rate is over 96%. The novel
scheme and new features introduced ensure that the system gag)
achieve high accuracy even with a smaller testing unit.

We have also developed an improved approach on unsupgy
vised speaker segmentation based 8 divergence analysis.
Incremental speaker modeling and adaptive threshold settin
have been described in detail, which makes unsupervise[g
speaker segmentation possible. Segmental clustering, which
requires less computation, has also been proposed, so that {R&
algorithm can totally suit the real-time processing in multi-
media application. Experiments have shown that the algorithm
is considerably effective. The overall recall is up to 89.89% [24]
and the precision is 83.66%.

In the future, our audio classification scheme will be im-
proved to discriminate more audio classes. We will improve the
performance of our speaker segmentation algorithm and extend
it to speaker tracking. We will also focus on developing an ef-
fective scheme to apply audio content analysis to assist video
content analysis and indexing.
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