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Abstract—We propose a novel linearly augmented tree method for efficient scale and rotation invariant object matching. The proposed

method enforces pairwise matching consistency defined on trees, and high-order constraints on all the sites of a template. The pairwise

constraints admit arbitrary metrics while the high-order constraints use L1 norms and therefore can be linearized. Such a linearly

augmented tree formulation introduces hyperedges and loops into the basic tree structure. But, different from a general loopy graph, its

special structure allows us to relax and decompose the optimization into a sequence of tree matching problems that are efficiently

solvable by dynamic programming. The proposed method also works on continuous scale and rotation parameters; we can match with

a scale up to any large value with the same efficiency. Our experiments on ground truth data and a variety of real images and videos

show that the proposed method is efficient, accurate and reliable.

Index Terms—Object matching, scale and rotation invariance, high-order model, linearly augmented tree, linear optimization,

decomposition method

Ç

1 INTRODUCTION

MATCHING objects in cluttered images is a challenging
task because the target object may appear rotated,

scaled and locally deformed. To handle shape variation,
object matching is naturally formulated as a graph matching
problem, in which the object is divided into parts represented
by graph nodes and coupling between parts is represented by
graph edges. The task of matching is to assign a target candi-
date to each graph node so that the assignment has low cost
and thematching is consistent with the constraints defined on
the graph edges. Graph matching is NP-hard in general. The
loops and high-order coupling among graph nodes exacer-
bate graph assignment in objectmatching.

We propose a novel formulation for scale and rotation
invariant object matching. In our model, the object parts
follow basic tree relations and we also introduce global
constraints that couple all the tree nodes. These global
constraints can be linearized and we call this class of con-
straints linearly augmented tree (LAT) constraints. We solve
the object matching problem with the LAT constraints by
decomposing it into a sequence of tree matching problems,
each of which can be efficiently solved by dynamic pro-
gramming (DP).

Object matching has been intensively studied. A large
class of graph matching techniques are based on discrete
energy minimization. If the energy function is submodu-
lar then it can be efficiently minimized using max-flow

algorithms [18], [15]. Alternatively, if the underlying
graph is a tree then dynamic programming can be used
[14]. The inference on the tree structure is efficient; how-
ever, tree structure models are not sufficient for many
real world problems. Scale and rotation invariant match-
ing require a non-tree model since additional constraints
are required to enforce all the model points to follow
roughly the same global transformation. Matching with
loopy graph structures is NP-hard in general. Different
approximation methods have been proposed. Popular
techniques include loopy Belief Propagation [19], conver-
gent Tree Reweighted Message Passing [27], integer qua-
dratic programming [21], interior point method [25],
primal-dual techniques [26] and dual decomposition [35],
[34]. These methods have been successfully applied in
tackling different vision problems such as image match-
ing and segmentation.

Other optimization methods such as convex-concave
programming [1], concave programming [5], eigendecom-
position [2], and linear programming [3] have also been
studied to tackle graph matching problems. These graph
matching methods try to find a permutation matrix that
quantifies the matching from a template graph to a target
graph. Spectral graph methods [29], [7], [8] use quadratic
programming to find the matching by solving eigenvalue
problems. Other methods for quadratic programming in
graph matching employ successive iterative projection [10],
graduated assignment [9], integer projected fixed point [11],
random walks [12] and game theory [39]. These previous
methods handle only discrete variables, e.g. binary assign-
ment variables, even though continuous procedures are
often used during optimization. It is difficult to generalize
these minimization techniques to handle a mixture of
discrete assignment and continuous variables in a matching
problem that has LAT constraints, e.g., the scale and rota-
tion parameters are continuous while the point assignment
is discrete. A typical workaround is to quantize these
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continuous variables and then apply the matching algo-
rithm in each of the quantized discrete settings. However,
such a simple solution is not ideal. The quantization
approach generates many matching cases and is very slow.
Quantization also introduces errors and affects the result.

Our optimization algorithm avoids such an ad-hoc quan-
tization step by using a decomposition method that splits
the relaxed problem into a master and slave optimization.
The master problem optimizes over the set of continuous
variables, and the slave problem performs efficient combi-
natorial optimization over the discrete variables in order to
generate proposals for the master problem. Furthermore,
the previous cited works only model low-order constraints
(typically up to two or three) and in contrast, we use the
LAT to model high-order constraints that couple all the
model points in the matching.

Other matching techniques do not use an explicit graph
template. The Hough Transform [16] is a robust and effi-
cient voting method. However, it needs a careful quantiza-
tion of the parameter space. Soft assign [20] alternates point
matching and global transformation estimation. RANSAC
[33] randomly generates and verifies a large set of possible
matches. These methods do not need to quantize the global
transformation parameters, but their performance deterio-
rates rapidly when clutter increases and features weaken. In
our experiments, we show that matching using LAT con-
straints is reliable even when the scene is highly cluttered
and the features used for matching are weak.

Two closely related works are linear matching [28] and
the local affine [36], [30] method. These methods have dif-
ferent drawbacks. In [28], the pairwise constraints must use
the L1 norm, and the scaling range must be known before-
hand so that the scale parameter can be quantized. Our pro-
posed method uses a different strategy to achieve an
efficient solution: we use a tree decomposition and dynamic
programming in this paper, whereas in [28] we use the
lower convex hull approximation trick and discard ineffec-
tive target points. The lower convex hull approximation is
not preferable if the features are very weak. The lower con-
vex hulls of weak features are flat; they do not have enough
structure to guide the search to the global optimum. The
method in this paper does not need to approximate the tar-
get matching surfaces with convex hulls; as a result, it is
more robust when handling weak features and local match-
ing ambiguity. Moreover, the method in [36], [30] tends to
match small structures when features are weak, whereas
our proposed method eliminates such a bias.

In summary, the contribution of this paper is threefold:

� Novel linear augmented tree (LAT) model. We propose a
new graph model to tackle object matching problems
in computer vision. Such a model allows arbitrary
metrics for the pairwise costs on trees and it also
allows powerful high-order constraints that couple
all the nodes. The LAT model is as powerful as the
more complex non-tree high-order models and, at
the same time, the inference on the model is efficient.

� New formulation for rotation and scale invariance. We
propose a new linear formulation to tackle rotation
and scale invariant matching. We show that the for-
mulation is a special case of the LAT inference

problem. Our method finds point matching and
global rotation and scale simultaneously. It does
not need to quantize the scale and rotation angle
because they are directly handled in the continu-
ous domain. The proposed method also allows vir-
tually unbounded scaling so that users do not
have to guess the scale range.

� Efficient matching algorithm. Our algorithm efficiently
solves the matching with LAT constraints by relaxing
the problem and decomposing it into a sequence of
efficient dynamic programming problems. Further-
more, the relaxed problem can be solved optimally.

2 SCALE AND ROTATION INVARIANT MATCHING

We formulate scale and rotation invariant matching using
linearly augmented tree constraints (Fig. 1). Given a set of
template points I and target candidate points J , the match-
ing problem is formulated to search for three items, namely
the mapping from model parts to the target candidates
f : I ! J , rotation angle u0 and scale s0 to minimize the
objective function

cðf; u0; s0Þ ¼ cuðfÞ þ ctðf; u0; s0Þ þ cgðf; u0; s0Þ: (1)

The unary cost term

cuðfÞ ¼ �
X
i2I

cði; fiÞ (2)

is the sum of matching costs cði; fiÞ between each model
point i and its target point fi, where � is a weight coefficient.
The scale and rotation term,

ctðf; u0; s0Þ ¼ m
X

ðp;qÞ2N
dðuððp; qÞ; ðfp; fqÞÞ; u0Þ

þ g
X

ðp;qÞ2N
jsððp; qÞ; ðfp; fqÞÞ � s0j;

(3)

encourages pairs of model points to have similar rotation
angle u0 and scale factor s0 in the matching. N , the set of
neighboring model points, corresponds to the edges of a tree.

uððp; qÞ; ðfp; fqÞÞ is the rotation angle from vector pq! to fpfq
��!

,
and sððp; qÞ; ðfp; fqÞÞ is the scaling factor between the two vec-
tors. Fig. 1 illustrates the matching of a pair of model points.
In Eq. (3), dð:Þ computes the difference of two angles, and coef-
ficientsm and g control theweight. The optional term

cgðf; u0; s0Þ ¼ fgðs0; u0; hð1Þ; . . . ; hðnÞ; hðf1Þ; . . . ; hðfnÞÞ; (4)

Fig. 1. Matching a template to a target object using linearly augmented
tree (LAT) model. Our method allows arbitrary pairwise constraints
defined on the basic tree edges and linear high-order constraints that
couple all the model nodes.
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introduces an extra constraint across all the model points
(jIj ¼ n), and hð:Þ is a function that maps model points
and target points to some quantities, e.g., the coordinates.
We require that gð:Þ in Eq. (4) contains only the L1 norm
term with positive coefficients and linear operations on
quantities of the model and target points. f is a coeffi-
cient. This optional term gives the formulation flexibility
to adapt to problems that require more complex con-
straints. As shown later, the scale-rotation term ct and
the term cg can be linearized and form hyperedges on
the basic tree nodes. Thus, the formulation follows an
LAT model.

Even though the basic structure of an LAT model is a
tree, the linear high-order constraints make the optimiza-
tion difficult to solve. A na€ıve discretization method is
infeasible if the scale upper bound is unknown; quantiz-
ing rotation angles and scales would result in too many
discrete cases. Instead, we propose to encode the problem
as a mixed integer linear program and show how to
exploit its special LAT structure to design an efficient
algorithm.

2.1 Linearization

We now describe how to encode the minimization of
cðf; u0; s0Þ (Eq. (1)) as a mixed integer linear program.
Assume that there are n model points and m target points.
Let ½½p�� ¼ 1 if the predicate p holds and 0 otherwise. We
introduce an n�m matrix X and m�m matrix Yp;q whose
elements

xi;j ¼ ½½fi ¼ j�� and yp;qi;j ¼ ½½fp ¼ i ^ fq ¼ j��:

The matrix X indicates the matching of model points to
target points, and the matrix Yp;q indicates the matching of a

model point pair ðp; qÞ 2 N to target point pairs. Note that
for each Y matrix i; j are in fact the element indexes in the
matrix, p and q are fixed. We enforce X to be an assignment
matrix with the unity constraint X1m ¼ 1n, where 1m is an
all one element vector of length m. The X and Y matrices
are related by

XTep ¼ Yp;q1m; and XTeq ¼ Y T
p;q1m;

where the n-vector ep ¼ ½0; 0; . . . ; 1; 0; . . . ; 0�T has a single
unity element at p.

The unary cost term defined in Eq. (2) can be represented
as trðCTXÞ where C ¼ ½cði; jÞ� is the matching cost matrix
whose element cði; jÞ is the matching cost from model point
i to target point j.

The rotation term. For a model point pair ðp; qÞ 2 N , we
assume p matches target point i and q matches j. Let the

rotation angle from vector pq! to ij
!

be u
p;q
i;j and the m�m

rotation angle matrix Qp;q ¼ ½up;qi;j �. If the target vector ij
!

degenerates to a single point then u
p;q
i;j is assigned a random

number in ½0; 2p�. The rotation angle for the model point

pair ðp; qÞ can be represented as trðY T
p;qQp;qÞ. We require that

all the model point pairs share similar rotation in the match-
ing so that the object’s spatial structure is maintained. To

this end, we may minimize
P

ðp;qÞ2N jtrðY T
p;qQp;qÞ � u0j, where

u0 is the overall (unknown) rotation angle, but this method

does not work near the boundary between angle 0 and 2p.
To avoid the difficulty, we split the rotation term into cosine
and sine terms:

X
ðp;qÞ2N

���tr�Y T
p;q cos ðQp;qÞ

�� u0

��þ ��tr�Y T
p;q sin ðQp;qÞ

�� v0
���;

where u0 and v0 correspond to the cosine and sine of the
unknown rotation angle u0, and cos ð:Þ and sin ð:Þ apply to
each element of matrix Qp;q. The absolute value terms are
converted into linear functions by using a standard auxil-
iary variable trick [24]. Essentially, by introducing two non-
negative auxiliary variables yþ and y�, minjxj is equivalent
to minðyþ þ y�Þ; s:t: x ¼ yþ � y�. It is easy to verify that
either yþ or y� has to be zero and therefore jxj ¼ yþ þ y�

when the optimum is achieved.
The scaling term. The spatial consistency constraint fur-

ther enforces that the line segments between neighboring
model points should scale uniformly. Similar to the rotation
matrix Qp;q, we define an m�m scaling matrix Sp;q for each
pair ðp; qÞ 2 N . The scaling for model point pair ðp; qÞ is

therefore trðY T
p;qSp;qÞ. To enforce the scaling consistency, we

minimize X
ðp;qÞ2N

��tr�Y T
p;qSp;q

�� s0
��;

where s0 is the global scaling factor. We can linearize this
term with auxiliary variable tricks similar to the rotation
term.

Other optional terms. Apart from the above terms, we can
also introduce the optional term cg in Eq. (1), which is
composed of L1 norms and linear functions of the quantities
attached to model and target points. In our formulation,
cg may have u0 and s0 as parameters. For instance, to match
unreliable regions, we can globally constrain the overall tar-
get area to be similar to the template area multiplied by a
scaling factor. If the optional term follows the aforemen-
tioned constraints, it can be linearized: each jvj term in
g becomes a summation of two non-negative auxiliary vari-
ables in the objective and their difference is set to equal v in
the constraints.

We now obtain a mixed integer linear formulation of the
nonlinear optimization in Eq. (1):

max

(
� �trðCTXÞ �

X
ðp;qÞ2N

�
m
�
uþ
p;q þ u�

p;q

þ vþp;q þ v�p;q
�þ g

�
sþp;q þ s�p;q

�	� fgoðwÞ
)
;

(5)

subject to:

trðY T
p;q cos ðQp;qÞÞ � u0 � uþ

p;q þ u�
p;q ¼ 0;

trðY T
p;q sin ðQp;qÞÞ � v0 � vþp;q þ v�p;q ¼ 0;

trðY T
p;qSp;qÞ � s0 � sþp;q þ s�p;q ¼ 0;

gcðX;wÞ ¼ 0;
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XTep ¼ Yp;q1m; X
Teq ¼ Y T

p;q1m; X1m ¼ 1n;

0 � uþp;q; u
�
p;q; v

þ
p;q; v

�
p;q; s

þ
p;q; s

�
p;q; w � M;

a � u0 � b; c � v0 � d; � � s0 � L; u0 � v0 ¼ �1;

where X and Y are binary matrices. The linear function go is
induced by the optional constraints; it is a linear function of
X and non-negative auxiliary variables w. In the objective,
the X terms have been absorbed into the first cost term and
we denote go as a function of w. The constraint function
gc corresponds to all the L1 norm terms in the optional term.

In Eq. (5), the original minimization is changed to maxi-
mization of the negative. An extra constraint ju0j þ jv0j ¼ 1
is included to approximate the orthonormal constraint

u2
0 þ v20 ¼ 1. The bounds ½a; b� and ½c; d� are determined by

the quadrant of the approximation line. For instance, if
u0 þ v0 ¼ 1, we have a ¼ 0; b ¼ 1 and c ¼ 0; d ¼ 1. We find
the optimum among four quadrants. This constraint is
optional; when included it improves the quality of the relax-
ation. We also include an upper bound M for the auxiliary
variables; M is a large number to avoid the unbounded
solution when the program is decomposed. The scale is
upper bounded by L and lower bounded by a small number
�. In this paper, M ¼ L ¼ 1;000, and � ¼ 0:001. Another
small change in the optimization is the maximization of the
negative of the original objective to achieve the minimiza-
tion. This does not change the optimum; it is for the clarity
of discussion using the shadow price concept: we maximize
the profit given some resources, where the resources are the
righthand side values (the constant part) of the constraints
and they can be priced out with shadow prices.

It helps to visualize themixed integer linear programusing
coupled trellises as illustrated in Fig. 2. By expanding the aug-
mented tree nodes, we obtain a set of coupled trellises. Each
trellis node corresponds to an X variable, and the edges
between the candidate nodes of two neighboring model
points correspond to a Y matrix. The optimization can thus be
treated as searching for the optimal “paths” starting from a
tree root node candidate and ending at a candidate of each
tree leaf node. If the paths pass a node, the corresponding X
variable is 1 and otherwise 0. If the paths pass an edge, the cor-
responding Y variable is 1 and otherwise 0. The cost of the fea-
sible paths is the summation of the node costs, the scale-
rotation cost and other optional costs induced by g. Due to the
constraints that couple the tree branches, searching for the
optimal paths in the trellises is a hard problem.

The optimization in Eq. (5) can be relaxed into linear
programs and solved by the simplex method. However,
when the target point number approaches thousands or mil-
lions, directly solving the large scale optimization becomes
infeasible. Fortunately, with the LAT constraints, it can be

decomposed into a sequence of efficient dynamic program-
ming problems.

2.2 Decomposition into Dynamic Programming

It is the scale, rotation and the g constraints, the boxed con-
straints in Eq. (5), that complicate the optimization. Without
the “complex” constraints, the problem turns into an optimi-
zation on a tree. The complex constraints introduce links
(hyperedges) among all the tree nodes. If we find feasible
solutions on the tree, we may use their linear combinations
to satisfy the complex constraints and to optimize the objec-
tive based on Dantzig-Wolfe decomposition [40]. However,
a na€ıve decomposition of the optimization into a sequence of
linear programs slows down the optimization and increases
the memory usage. In the following, We show how to use
the special LAT structure and convert our problem into a
sequence of efficient dynamic programs on trellises.

We rewrite Eq. (5) in a compact format:

max cTx : Ax ¼ r; Bx ¼ e
� �

: (6)

Abusing notation, we use the vector x to indicate the varia-
bles in Eq. (5), i.e., x includes the X, Y , u0, v0, s0 and auxil-
iary variables. We use the vector c to denote the objective
coefficients in Eq. (5). The complex constraints (boxed) are
denoted as Ax ¼ r and other constraints are denoted as
Bx ¼ e.

Initialization.Wefirst remove the complex constraintsAx ¼
r and obtain a linear program LPs. We select the lowest cost
target point for eachmodel point to maximize LPs. The auxil-
iary variables uþ

p;q; u
�
p;q; v

þ
p;q; v

�
p;q; s

þ
p;q; s

�
p;q and w are bounded in

LPs. Since their coefficients are negative in the objective func-
tion, they all should take their lower bounds. We determine
the values of s0, u0 and v0 using the samemethod.

We obtain two feasible solutions of LPs such that their
linear combination satisfies the complex constraints. From
the initial solution, we can always reset uþ

p;q; u
�
p;q; v

þ
p;q; v

�
p;q;

sþp;q; s
�
p;q and w so that aT

i x1 ¼ ri þ 1 and aT
i x2 ¼ ri � 1,

where ai is the coefficient vector corresponding to the ith
row of A and ri is the ith element of r. The solution
ðx1 þ x2Þ=2 is feasible for both the simple and the complex
constraints. Thus, x1 and x2 serve as the first two proposals.

Updating tree trellis for new proposals. The goal is to find
new proposals and the weights so that we can combine the
proposals to optimize the objective and satisfy the complex
constraints. Assume that we have k� 1 proposals and we
introduce the kth proposal xk so that

½Fk� : max
�1;...;�k�0

Xk
j¼1

�jc
Txj :

Xk
j¼1

�ja
T
i xj ¼ ri;

Xk
j¼1

�j ¼ 1

( )
;

(7)

where � is the weight vector for the proposals. For the previ-
ous k� 1 known proposals, we price out the constraints of
Fðk�1Þ with shadow prices, which equal the optimal dual

variable values. We denote the ith constraint’s shadow price
as di and the unit sum constraint’s shadow price as d. Based
on the simplex method, by introducing the new proposal,

the maximal gain of the objective is �kðcTxk �
P

i a
T
i dixk �

dÞ; recalling that the shadow price is the change of the

Fig. 2. LAT model and trellises. Thick lines indicate the paths.
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objective per unit change of the righthand side (the constant
part) of a constraint. To improve the objective, the gain has
to be greater than 0. Instead of randomly searching for a
new proposal, based on the Dantzig-Wolfe decomposition
[40], we choose the xk that maximizes the gain: stripping

away the �k and d, we maximize ĉðxÞ ¼ ðcT �P
i a

T
i diÞx, i.e.,

xk ¼ arg max
x

ĉðxÞ : Bx ¼ ef g; (8)

where the set of constraints includes the tree constraints and
other bound constraints.

Using the LAT structure, we solve Eq. (8) via dynamic pro-
gramming. Since the constraint matrix B excluding the col-
umns and rows for variables other than X and Y is totally
unimodular, andX, Y and the other variables are separable,
we always have integer solutions for X and Y , and the opti-
mization is equivalent to finding the longest paths on trel-
lises expanded from the tree defined by N . We optimize the
trellis paths and other variables separately: To optimize the
paths on the trellises, we first update their edge weights
based on the Y variable coefficients in ĉðxÞ (all X variables
have been substituted by Y variables) and then we use
dynamic programming to implicitly enumerate all the feasi-
ble paths. The auxiliary variables and s0, u0, v0 and w in
Eq. (8) take their lower bounds or upper bounds depending
on the signs of their coefficients in ĉðxÞ.

Termination condition and looping. We check the optimal
objective ĉðx	Þ of the dynamic programming and proceed as
follows

ĉðx	Þ > d add x	 as a proposal
� d terminate:



(9)

Therefore, if the gain ĉðxÞ is greater than d, we introduce a
new proposal, update the trellises and solve a new dynamic
program; otherwise, the iteration terminates. The iterative
process is finite and terminates with the optimum solution
for the relaxed problem [40]. The optimal solution is a linear
combination of the proposals.

Obtaining integral solution. The optimal solution for the
relaxed solution is fractional. We convert it into an integral
solution by solving a mixed-integer program. We solve the
mixed-integer program that keeps only the non-zero value
target points. We observe that in practice there are very few
non-zero assignment variables in the relaxed solution;
therefore, the complexity of this stage is negligible. This
scheme ensures that if the optimal target point for each
model point is non-zero in the relaxation, then the global
optimum is achieved. The small mixed-integer program is
solved using a branch and bound method. The complete
procedure is summarized in Algorithm 1.

Algorithm 1. Scale and rotation invariant matching on
linearly augmented tree (LAT) (Eq. (5))

Initialize Get feasible solutions x1 and x2 and set k ¼ 2.
repeat
Solve Fk (Eq. (7)) and k :¼ kþ 1
Update trellis weight (Eq. (8)) and use dynamic program-
ming to solve for xk.

until convergence (Eq. (9)).
Obtain integral solution.

As a further remark, our approach is different from the
Dual Decomposition [35]. The Dual Decomposition solves a
different problem:

min
X
i

fiðxÞ subject to x 2 C;

where C is a convex set. It is assumed that optimizing over
the individual problems, i.e., minffiðxÞ : x 2 Cg is tractable.
Its primal and dual problems are:

½P � min
X
i

fiðxiÞ; s:t: xi ¼ x; xi 2 C 8i

½D� max
�

min
xi;x

X
i

ðfiðxiÞ þ �iðxi � xÞÞ; s:t: x 2 C ; xi 2 C 8i:

The dual problem [D] is separable and the projected subgra-
dients are used to optimize the dual. Our approach is there-
fore different from the Dual Decomposition [35]. Our
method decomposes the constraints and optimizes on a tree.

Toy example. We match a three-point template in red to
the blue target points (Fig. (5)). The template’s basic graph
is a tree with N ¼ fð1; 2Þ; ð1; 3Þg. Model point 1 matches tar-
get point 1 with cost 10, and all the other points with cost 9.
Model points 2 and 3 match every target point with cost 10.

In this example, we ignore the optional term g. However,
we still include the hyperedge term that involves scale and
rotation consistency; it is non-trivial to solve. We construct
the proposed model and solve the optimization using
Algorithm 1. The solution process involves a sequence of
trellis updating. In the following, we show one of the four
linear programs that achieve the global optimum. Initially,
the trellises are shown as Fig. 3a. The color of the edges
illustrates their weight. The assignment on trees can be
efficiently computed via dynamic programming: the result
is 1 ! 2; 2 ! 1; 3 ! 1. s0, u0, v0 and auxiliary variables take
their lower or upper bounds based on the signs of their
objective coefficients. We update the trellises using the pro-
posed scheme so that a new tree solution linearly combined
with previous proposals improves the objective. The trel-
lises evolve and at the last stage they are as shown in
Fig. 3b. The tree solution is 1 ! 2; 2 ! 1; 3 ! 3, which is
the optimum. Fig. 4a shows the assignment and rotation-
scale parameters in different proposals. Fig. 5 shows how
the floating-point assignments for model points 1, 2, 3 and
the values for s0, u0, v0 change in each iteration. Fig. 4b
shows the convergence process: the dynamic programming

Fig. 3. The trellises for tree matching in the first (a) and last (b) stage of
iteration. S1, S2 and S3 denote the three model points and T1, T2, T3
and T4 denote the four target candidates. The warm color indicates high
value and cool color indicates low value. The tree optimization finds the
matching such that the total edge value is the highest. The thick edges
indicate the optimal matching. Note that links in this illustration are differ-
ent from the ones in Fig. 5.
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solution approaches d and the gap approaches zero as the
objective improves. The proposed method yields integral
solution; it is the global optimum.

Real image example. In Fig. 6 we match a fluffy animal. We
find the region matching from the template to the target
object. It is challenging to match these unreliable regions
due to random superpixel splitting and merging. The pro-
posed method constructs four linear programs. In Fig. 6,
rows 2-5 show the intermediate matching during iterations
in the optimization. The proposed method gives an accurate
matching result when the iteration terminates. It is interest-
ing to see that non-optimal solutions in the intermediate
stages may give results quite far from the true matching. It
is thus necessary that we try to approach the global opti-
mum. The matching improves as more proposals are
included. The last subfigure in Fig. 6 row 5 shows the result
from further along in the branch and bound procedure.
Fig. 8a shows the trend of the objective function, tree

objective function and d, as the iteration proceeds. The
objective is optimized as the gap between the tree objective
and d approaches 0. The optimal linear program takes 525
iterations in this example.

Fig. 7 shows another example of matching the regions of
a person in real images. There is large rotation and scale
change in this example. Our method yields accurate match-
ing. Fig. 8b shows the trend of energy evolution as the itera-
tion converges to the optimal matching.

Complexity. The complexity of the proposed method
depends on the size of the tree structure matching and
the linear program for fusing the proposals. A standard
dynamic programming solution for tree matching is

Oðnm2Þ where n is the number of model points andm is the
number of target points. If we can embed the target points

Fig. 4. (a): The proposals for the toy example. Sites 1-3 are nodes for the
three template points, each of which may take value 1, 2, 3 or 4 that cor-
responds to the label of four target points. The proposal variables also
include cosine and sin of the rotation angle and the scale. The auxiliary
variables are in fact also proposal variables; their values are not shown.
(b): Convergence of the toy example.

Fig. 5. Matching a three-point template. The proposed algorithm
achieves optimum in 34 iterations, in which eight samples are shown.
The gray levels of lines indicate the assignment strength.

Fig. 6. Matching a fluffy animal. Row 1, from left to right: the template image, target image, model overlaid on the template image and target image
superpixels. Rows 2-5: The matching improves as more proposals are included. Here we show the iterations of the optimal linear program (four linear
programs are solved in the optimization). The matching result is obtained by rounding the floating point solution. The final matching result (in row five)
is from the branch and bound procedure.
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on grids, the complexity can be reduced to OðnmÞ. The com-
plexity of Fk in Eq. (7) is independent of the n and m. It is
mostly determined by the number of complex constraints
t and the number of proposals k. With the simplex method,
the average complexity is roughly tlogðkÞ [24]. Therefore,

the overall complexity of is Oðkðnm2 þ t logðkÞÞÞ. For most
problems, the optimization converges quickly. Figs. 8c and
8d illustrate the complexity of the proposed method based
on the statistics of a large number of synthetic problems.

The proposed method is much more efficient than a direct
linear programming using the simplex method. By embed-
ding target points on grids and using the distance transform
trick [32] to solve the dynamic programming on trees, it
becomes possible to solve problems with millions of target
points.

Sensitivity analysis. The proposed method has four coef-
ficients �;m; g and f that control the weight for different
terms in the objective function. Sensitivity analysis on lin-
ear programming has been well known [37]. One byprod-
uct of the simplex method is that we can further obtain
the range in which the parameters in the objective can
vary without affecting the optimal solution. Sensitivity
analysis on mixed integer linear programming is a much
harder problem [38]. In this paper, we use a statistical
approach to analyze sensitivity of these coefficients. We
test the sensitivity of setting these parameters using
ground truth point set matching. To simplify the process,
we vary a single parameter in each test while keeping
others fixed. In the first test, we change �, the coefficient
of the local matching cost, to test how changing the rela-
tive weight between the local term and global terms
affects the result. In the second test, we change g, the coef-
ficient of the scale consistency term and test how changing
the relative weight between the scale term and rotation
term affects the result. We set the weight of the optional
term, f, to be zero.

For each parameter setting, we run the random point
matching experiment 500 times and we compute the mean
matching error. In this test, the template image contains
30 points and we randomly select 10 as the template points.
The size of the template object is 200 pixels. We set the noise
level to 1=3 and the distortion parameter to 0:01. The

Fig. 8. (a) Energy curve for matching a fluffy animal. (b) Energy curve for
matching person. (c) The number of iterations is determined by the num-
ber of complex constraints but is independent of the number of target
points. (d) The proposed method is more efficient than the simplex
method.

Fig. 7. Matching a person. Row 1: The template image, target image, model overlaid on the template image, and target image superpixels. Rows 2-5
show the iterations as more proposals are included. The matching result is obtained by rounding the floating point solution. The last matching result
in row 5 is from the branch and bound procedure.
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distortion is defined as the ratio of the range of perturbation
of each point to 200, the size of the object. Figs. 9a and 9b
illustrate how the average matching error varies as the
parameters change. As shown in Figs. 9a and 9b, the mean
error changes gradually as the weights change in a large
range; the variation of the matching error is small relative to
the object size. The proposed method is thus not sensitive to
small perturbations of the parameter settings.

Manual tuning can be used to adjust these few parame-
ters �;m; g and f, or they can be optimized if training data is
available. When the features are weak, features match to
everywhere with similar costs. The local feature matching
cost thus does not count much in the matching; the spatial
consistency term (the global term) dominates in this case.
As shown in Figs. 9c and 9d weak SIFT features have quite
flat matching cost curves. For matching that involves such
weak features, we do not have to change the weight
between the global term and the local term; the optimization
handles them implicitly. In the extreme case where most
features are “bad” (local features match wrong targets with
much lower costs than matching to the correct points), we
need to either give a much higher weight on the spatial
terms or completely discard the local cost terms. For differ-
ent model graphs, ideally the parameters should be re-
trained to achieve the best result even though a typical set-
ting usually works well across graph models. In this paper,
the parameter setting for all the synthetic point matching
experiments is � ¼ 1;m ¼ 10; g ¼ 10 and f ¼ 0. For all the
real image matching experiments, the parameter setting is
� ¼ 1;m ¼ 100; g ¼ 100. In the SIFT feature matching and

the region matching f ¼ 10�6 and in the real image patch
matching f ¼ 0.

Parameter optimization. If we have enough ground truth
training samples, we can also optimize these parameters.
Since we minimize the energy function in Eq. (1), we need
to set the parameters so that for each training image the cor-
rect matching has lower energy than incorrect ones. For
ease of notation, we use v to represent the vector of �;m; g

and f, vector uðiÞ
p to represent the positive matching’s

energy values in the objective function weighted by these

coefficients for training image i, and uði;jÞ
n to represent the

jth incorrect matching’s energy values in the objective func-
tion weighted by these coefficients for training image i.
Here, we use a similar formulation as [17]. We optimize the
following linear program:

max
X
i

ti

s:t: vT
�
uði;jÞ
n � uðiÞ

p

� � ti; 8i; j
vT1 ¼ 1; v � 0:

The optimal coefficients vmaximize the margin between the
objective function of the positive and negative samples. To
avoid bias, the training samples should have the same num-
ber of template points. The optimization can be efficiently
solved using the simplex or interior point method. The
parameter setting is not sensitive and therefore the trained
parameters are expected to be able to be generalized to real
applications.

3 BENCHMARKING USING GROUND TRUTH DATA

We benchmark the performance of the proposed method on
synthetic point data sets, which have been widely used in
testing matching performance. There are two sets of test pat-
terns: one is the fish and Chinese characters in [20], [23], the
second set of test patterns consists of random dots. Example
matchings provided by the proposed method on these pat-
terns are illustrated in Fig. 10. In each experiment, we ran-
domly select 10 model points from the template image to
form a template graph. The matching is a challenging task
even for clean target images since other points act as clutter
points and there are 10 times more clutter points than model
points. The target patterns of the fish and character are
smoothly deformed from their templates, while the target
points of random dots are randomly perturbed to simulate
deformation. We use a distortion factor to quantify the
perturbation range: a distortion of 0.1 corresponds to range
0-20 pixels and a distortion of 0.01 corresponds to range

Fig. 9. (a-b): We use the ground truth point matching to test how sensi-
tive our matching result is to the parameter setting. The template object’s
size is 200 pixels. As shown in the two test cases, the proposed method
is not sensitive to parameter settings. (c) and (d) show the matching
costs of strong and weak features on the INRIA Graffiti test images one
and two. (c): Top 20 matching costs of strong features, whose lowest
cost matching corresponds to the correct target. Each line corresponds
to a feature point. (d): Top 20 matching costs of weak features, whose
lowest cost matching does not find the target. Each line corresponds to
a feature point.

Fig. 10. Example matching of the proposed method on synthetic data:
(a) fish one with zero clutter, (b) fish one with 50 clutter points, (c) fish
two with zero clutter, (d) fish two with 25 clutter points, (e) Chinese char-
acter with zero clutter, (f) Chinese character with 10 clutter points,
(g) random points with zero clutter and 0.1 distortion, and (h) random
points with 25 percent clutter and 0.1 distortion. Ten points are randomly
selected on each template for matching. We introduce different levels of
clutter to the target images in the experiments. The object deformation
for the fish and Chinese character is fixed. The distortion for random dot
targets varies in different test cases.
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0-2 pixels. Clutter points are also included in the target pat-
terns. We randomly rotate and scale them to form the final
target images. The rotation angle is from 0 to 360 degrees
and the scale is from 0.5 to 2. Our method does not need to
specify a small upper bound for the scale; the range ½0:5; 2�
is required by some competing methods. Our method
searches for the scale in the range of ½0:001; 1;000�. For each
pair of template and target candidate points, the matching

cost is the lowest x2 distance between their shape contexts
[23] over the range of scales and rotations.

We first compare the proposed method with a simple
method without using global constraints such as rotation
and scaling consistency. This greedy approach finds the
best match for each template point solely based on the local
matching cost. We test the methods using the random point
test. When there is zero clutter and distortion setting is
0.001, mean matching errors for the greedy method
and ours are 78 and 8.6 pixels respectively. At the level of
20 percent clutter and 0.1 distortion, the mean errors for the
greedy method and ours are 98 and 19 pixels. The size of
the template is around 200 pixels. These numbers show that
the local matching itself is unreliable and we need the global
constraints for good results.

We compare our method with state-of-the-art image
matching methods, including the tensor method [29],
RANSAC [33], linear matching [28] and local affine invari-
ant matching [36]. The code for [29] is modified to include
the local matching costs. In the comparisons, our method
uses only the rotation and scaling global constraints, while

the g term is set to 0. A dynamic programming approach is
also compared: by quantizing the scale and rotation angle,
each discrete case contains only unary and pairwise con-
straints and can be solved by dynamic programming. This
DP approach is in fact a variant of the Generalized Hough
Transform. The quantization intervals for the scale and
rotation are 0.1 and 5 degrees respectively. The DP
method uses the same set of parameters as the proposed
method in the objective.

We randomly generate 500 matching problems for each
test case and we use the average matching errors to quantify
the performance of each method. As shown in Fig. 11 and
Table 1, the proposed method has the lowest average
matching error in all the tests. Interestingly, our method
outperforms the discretized “exhaustive” search method
(DP) under the same parameter setting: search in the contin-
uous domain helps.

We further compare the proposed method with different
generic graph matching methods such as GA [9], PM [10] ,
SM [7], SMAC [8], IPFP [11], RRWM [12], U [2], Rank [4] ,
QCV [1], Path [1], and FGM [6]. The code for these methods
is from the authors’ websites, apart from the implementa-
tions of methods of Rank, U, QCV and Path which are from
GraphM [22]. We compare with different graph matching
methods using the random point matching ground truth
test. The template contains 10 points in the template image.
Similar to the previous random point matching test, a target
is a scaled, rotated and perturbed version of a template point
set with extra clutter points included. We use the shape con-
text distance in different rotations and scales to measure the
local matching costs. We adjust the combination weight
between the local term and the global term for the competing
methods to achieve their best results. We change the clutter
level and distortion setting and repeat each experiment for
500 times. We use the average matching error to quantify the
performance. As shown in Fig. 12 and Table 2, when there is
no clutter, FGM gives the lowest matching error and when
the clutter increases from 0 to 20 and 50 percent, our method
out-performs all the competing methods. The proposed
method is also several orders faster than FGM.

4 EVALUATION ON REAL IMAGES AND VIDEOS

We evaluate the proposed method using a variety of videos
on different features including SIFT [13], image patches,
and unreliable regions. Using a randomly selected template
in each experiment, we use the proposed method to match
the target object in cluttered videos. We also compare

Fig. 11. Using ground truth synthetic data, we compare the proposed
method with image matching approaches: tensor method [29], RANSAC
[33], linear matching [28], local affine invariant matching [36] and DP on
quantized scales and rotation angles. F-I and F-II are two fish pattern
matching tests that include zero clutter. F-I(25) and F-II(25) use two fish
patterns and introduce 25 clutter points in the target. C is the Chinese
character matching test with zero clutter and C(10) includes 10 clutter
points in the target. R is the random dot test in which distortion is 0.1 and
clutter is 0. R(25) is the random dot test in which distortion is 0.1 and
clutter is 25 percent.

TABLE 1
Matching Error Comparison with Image Matching Methods

This Paper RANSAC DP Linear Tensor Affine

Fish I (Clutter point # ¼ 0) 3.1447 3.7736 4.1929 6.2893 13.417 48.637
Fish I (Clutter point # ¼ 25) 4.6122 5.0314 5.2411 6.499 34.591 71.908
Random Dots (C ¼ 0, D ¼ 0.1) 24.319 26.205 32.704 36.897 51.363 130.4
Random Dots (C ¼ 25%, D ¼ 0.1) 33.753 37.317 41.3 41.09 65.618 128.3
Fish II (Clutter point # ¼ 0) 19.078 34.591 26.415 23.48 59.958 62.055
Fish-II (Clutter point # ¼ 25) 27.883 68.553 39.623 30.608 59.748 62.893
Character (Clutter point # ¼ 0) 16.981 28.931 31.027 23.27 52.83 74.423
Character (Clutter point # ¼ 10) 20.545 30.608 33.333 20.755 63.312 71.908

Best method for each test is shown in bold.
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with the competing methods used in the synthetic data
experiments.

Matching SIFT. We first match SIFT features and test
whether the proposed method still has an advantage over
the competing image matching methods. In this experi-
ment, the proposed method also uses an optional affine
constraint g, i.e., the target of the root model point is con-
strained to be close to a point that is the linear combina-
tion of all the other target points; the coefficients are
determined from the layout of the model points. We
select the top five model points with the lowest best and
second-best matching candidate cost ratio [13] to form the
model graph. To simulate challenging situations, for each
model point, we corrupt the best matching candidate cost
and let it equal the second best matching cost. Fig. 13
shows the comparison results for the 429-frame cup

sequence. Due to the complexity of the tensor method
[29] we have to use a higher threshold to reduce the num-
ber of SIFT features. We use visual inspection to quantify
the detection rate: if all the model points match correctly,
we have a correct detection. In this experiment, the pro-
posed method achieves a 90 percent detection rate, which
is the highest. It also has a complexity similar to the effi-
cient linear [28] and affine [36] methods.

Matching image patches. We test the reliability of the
algorithm when using non-distinctive features. We use
edge pixels and image patches for matching. The target
candidate points include all the edge pixels in the target
image. The local matching cost is the lowest cost of the
image patch matching at different rotations; because the
image patch is small it is roughly scale invariant. We run
the algorithm on a 400-frame sequence of a person run-
ning (Fig. 14). With such rough features, the proposed
method still reliably matches the target with a 97 percent

Fig. 12. We compare the proposed method with GA [9], PM [10] , SM [7], SMAC [8], IPFP-U and IPFP-S [11], RRWM [12], FGM-U and FGM-D [6],
U [2], Rank [4] , QCV [1], and Path [1]. In test T1-3, clutter C is 0 and distortion D is from 0.001 to 0.1. In test T4-6, clutter C is 20 percent and distor-
tion D is from 0.001 to 0.1. In test T7-9, clutter C is 50 percent and distortion D is from 0.001 to 0.1. IPFP-U and IPFP-S use undirected and directed
graph respectively. FGM-U and FGM-D also use undirected and directed graph.

TABLE 2
Matching Error Comparison with Graph Matching Methods

This paper GA PM SM SMAC IPFP-U IPFP-S RRWM FGM-U FGM-D U Rank QCV Path

T1 (C ¼ 0, D ¼ 0.001) 4.4328 11.37 100.81 15.531 35.305 12.747 6.1172 1.166 0.9532 1.638 35.598 144.51 145.69 145.69
T2 (C ¼ 0, D ¼ 0.01) 5.0628 14.822 104.48 20.043 40.315 15.29 9.5672 3.252 2.178 4.5524 44.232 110.94 32.701 32.701
T3 (C ¼ 0, D ¼ 0.1) 40.951 75.533 130.56 83.946 90.13 76.702 71.383 58.363 36.753 62.006 111.97 128.5 88.57 88.57
T4 (C ¼ 0.2, D ¼ 0.001) 13.801 59.994 138.71 90.798 65.322 146.42 145.78 118.68 25.109 46.279 135.98 145.7 110.73 110.73
T5 (C ¼ 0.2, D ¼ 0.01) 18.414 64.083 138.72 92.012 68.894 147.48 145.24 119.33 27.798 48.87 136.78 143.44 111.2 111.2
T6 (C ¼ 0.2, D ¼ 0.1) 64.708 102.4 142.85 115.61 106.38 145.53 146.46 132.97 75.14 97.684 146.48 149.33 130.8 130.8
T7 (C ¼ 0.5, D ¼ 0.001) 36.863 110.3 149.51 121.26 95.368 147.62 146.22 132.64 79.851 88.988 144.55 146.21 137.06 137.06
T8 (C ¼ 0.5, D ¼ 0.01) 37.697 111.08 149.82 120.92 96.812 146.52 145.64 134.6 79.687 97.386 144.4 146.48 135.36 135.36
T9 (C ¼ 0.5, D ¼ 0.1) 85.572 124.56 149.85 131.6 124.09 147.56 148.86 141.48 110.79 119.04 148.49 149.64 139.15 139.15

Best method for each test is shown in bold.

Fig. 13. Matching 429-frame cup sequence. The sample result shows
how the proposed method (a) improves the result over DP (b),
RANSAC (c), tensor [29] (d), linear [28] (e) and local affine [36] (f)
method. The table summarizes the detection rates for the video.

Fig. 14. Matching using edge pixels on a 400-frame sequence of a per-
son running. The detection rate is 97 percent. Average running time is
0.7 s per frame.
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detection rate. It is also efficient: the typical running time
of the optimization is 0:7 s per frame.

Matching unreliable regions. We demonstrate the ability
of LAT method on using simple features to match unreli-
able regions. This setting enables fast object matching.
However, drastic region variation, non-distinctive fea-
tures and strong clutter also pose a great challenge. Previ-
ous techniques [41], [42] rely on strong features that are
expensive to compute or hierarchical region matching
that has high complexity.

We over-segment images into superpixels using [31]. The
model points and target points are superpixel weight centers
in the template and target images. The weak features we use
include: the average chromaticity of each superpixel, and a
shape feature defined as the ratio between the two eigenval-
ues of the xy coordinate covariance matrix. Apart from the
global constraint of rotation and scale, we also use a linear
constraint g to enforce the total area consistency. This term is

optional. We use it mainly to demonstrate the flexibility of
the proposed method when introducing more constraints.
Even though superpixels may change size arbitrarily, the
overall object size equals the template size scaled by a factor.

g is defined as g ¼ jtrðRTXÞ � s20tajwhereR is the target area
matrix and ta is the template area. The global constraint func-

tion g can be linearized by letting gc ¼ trðRTXÞ� s20ta � wþ þ
w� and go ¼ fðwþ þ w�Þ in Eq. (5), where f is a constant coef-

ficient. s20 can in fact be replaced by a linear term s0 and at the
same time we need to square the constant scaling matrices
S in Eq. (5).

Fig. 15 shows the result of matching a car in a video
sequence. The template image is randomly chosen. The tem-
plate graph is automatically generated from superpixels in a
manually labeled foreground area. Using the single tem-
plate, the proposed method finds the target cars in all the
target images. The superpixels, as shown in Fig. 15, are not
guaranteed to be consistent. There is unknown scaling and
rotation of the target object in these images. The fast motion
of the camera causes considerable motion blur and a person
passing the car also causes partial occlusion. It is challeng-
ing to match the target object. Our proposed method
matches the target car reliably in the video. In Fig. 16, we
show how the proposed method can be used to successfully

Fig. 15. Matching a car using superpixels. The first images in rows 1 and
3 show the template image and the region template. Five regions are
found on the template and form a graph model. Using the template we
match regions in the target images. Original target images are shown in
rows 1-2. The matching results are shown in rows 3-6.

Fig. 16. Matching a flag using superpixels. The first images in rows 1 and
3 show the template image and the region template. Three regions are
found on the template and form a graph model. Using the template we
match regions in the target images. Original target images are shown in
rows 1-2. The matching results are shown in rows 3-6.

Fig. 17. Matching buildings using superpixels. The first images in rows
1 and 2 show the template image and the region template. Twelve
regions are found on the template and form a graph model. Using the
template we match regions in the target images. Original target images
are shown in row 1. The matching results are shown in rows 2-3.

Fig. 18. Matching an outdoor scene using superpixels. The first images
in rows 1 and 3 show the template image and the region template. Nine
regions are found on the template and form a graph model. Using the
template we match regions in the target images. Original target images
are shown in rows 1-2. The matching results are shown in rows 3-6.
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match a flag, a deformable object, using a single graph tem-
plate. The target object also has large unknown scale
changes. In Figs. 17 and 18, we match buildings and an
outdoor scene layout. In this experiment, we have more

template parts. The proposed method still maintains the
efficiency and gives reliable results.

We further compare our method with 18 competing
methods on the challenging girl (Fig. 19) and mouse

Fig. 19. Matching using superpixels on the 264 frame girl sequence. The girl sequence has strong background clutter and unstable superpixels.
(a) is the template. The sample result of (b) the proposed method is superior to (c) DP, (d) RANSAC, (e) tensor [29], (f) linear [28], (g) local affine
[36], (h) GA [9], (i) PM [10], (j) SM [7], (k) SMAC [8], (l) IPFP-U [11], (m) IPFP-S [11], (n) RRWM [12], (o) FGM-U [6], (p) FGM-D [6], (q) U [2],
(r) Rank [4], (s) QCV [1] and (t) Path [1] method. The table summarizes the detection rates in the whole sequence.

Fig. 20. Matching using superpixels on the 551-frames mouse sequence. The superpixels are unstable and change drastically from frame to frame
due to the subtle color difference on the object and shading changes when the object rotates. The color of the mouse is also similar to the superpixels
on the wall. (a) is the template. In the target frame, (b) the proposed method succeeds, but competing methods (c) DP, (d) RANSAC, (e) tensor [29],
(f) linear matching [28], (g) local affine matching [36], (h) GA [9], (i) PM [10], (j) SM [7], (k) SMAC [8], (l) IPFP-U [11], (m) IPFP-S [11], (n) RRWM
[12], (o) FGM-U [6], (p) FGM-D [6], (q) U [2], (r) Rank [4], (s) QCV [1] and (t) Path [1] fail. The table summarizes the detection rates in the video.
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(Fig. 20) sequences. These sequences involve rotation and
large scale changes. The human subject in the girl

sequence also includes articulated movement. In this test,
the detection rate is determined by visual inspection. Due to
unreliable segmentation, we check the overall detection
result, i.e., we transform the model points using an affine
transformation that is based on the region center correspon-
dence and examine whether the matching is correct. Consis-
tent with the results from the ground truth experiments, the
matching results of the proposed method are significantly
better than all the competing methods. The proposed
method still works reliably even when the local features
become quite weak. The LAT model enables the proposed
method to maintain the performance in challenging situa-
tions. It is also efficient: the optimization takes less than a
second for a target image with hundreds of superpixels.

In this test, RANSAC gives more reliable results than
many more complex matching schemes. This is in fact not
a surprise, RANSAC can still work in highly cluttered
images, because it only requires two feature points to
have roughly correct matching to succeed. Many graph
matching methods are more sensitive to clutter. The
second best method is the brute force exhaustive search
in each quantized scale and rotation. The downside of

this approach is that it needs detailed quantization inter-
vals to give good results and therefore the procedure that
enumerates all these cases is several orders of magnitude
slower than the proposed method. The proposed method
works directly in the continuous domain of scale and
rotation and is equally efficient regardless of what the
scaling range is.

We apply the proposed method on four other challeng-
ing video sequences downloaded from YouTube (Fig. 21).
The detection rates and average running time of the pro-
posed method when applied to the six different videos are
listed in Fig. 22. The proposed method robustly matches the
target in these sequences with a detection rate from 90 to
98 percent. In the dancing sequence, our method matches
the articulated person correctly because region matching
reduces articulated matching to deformable object matching
problems. Our method can also deal with partial occlusion

Fig. 21. Results of the proposed method on real world data. The first column shows the randomly selected templates. Row 1: mouse (551 frames)
has drastic superpixel changes and similar foreground to the background. Row 2: girl (264 frames) has strong clutter. Row 3-6: dance-I
(713 frames), gym (386 frames), dance-II (792 frames), and skate (472 frames) have complex articulated movement, large deformation and self-
occlusion. Dance-II also includes a few human subjects with similar shapes and colors that form hard structured clutter. The videos are at http://
www.cs.bc.edu/ ~hjiang/details/cvpr11/index.html.

Fig. 22. The average running time for optimization in one frame is mea-
sured on a 2.8 GHZ machine.
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by enforcing the global spatial constraint. When feature
points are occluded in target images, the corresponding
template points match all the candidates with similar costs
and global spatial constraints help find the correct match-
ing. The few failure cases in these tests are due to the simple
features we use; more sophisticated features will further
improve the performance.

5 CONCLUSION

We propose a novel formulation for scale and rotation
invariant matching using Linearly Augmented Tree con-
straints. Due to LAT’s special structure, we can solve the
relaxed matching problem efficiently by solving a
sequence of easier dynamic programming problems. The
proposed method operates in the continuous domain and
therefore avoids the problem of quantizing scale and rota-
tion parameters. The optimization algorithm also searches
in virtually unbounded scaling ranges with the same effi-
ciency. Our experimental results on ground truth data and
real images demonstrate that the proposed method is
more reliable than previous methods. The experiments
confirm that our method attains high performance even on
very weak features such as unreliable regions. We believe
our method is generic and can be adapted to solve prob-
lems in other application domains including pose estima-
tion and object tracking.
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