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Optimizing Multiple Object Tracking and
Best View Video Synthesis

Hao Jiang, Sidney Fels, and James J. Little

Abstract—We study schemes to tackle problems of optimizing
multiple object tracking and best-view video synthesis. A novel
linear relaxation method is proposed for the class of multiple
object tracking problems where the inter-object interaction
metric is convex and the intra-object term quantifying object
state continuity may use any metric. This scheme models ob-
ject tracking as multi-path searching. It explicitly models track
interaction, such as object spatial layout consistency or mutual
occlusion, and optimizes multiple object tracks simultaneously.
The proposed scheme does not rely on track initialization and
complex heuristics. It has much less average complexity than
previous efficient exhaustive search methods such as extended
dynamic programming and can find the global optimum with high
probability. Given the tracking data from our method, optimizing
best-view video synthesis using multiple-view videos is further
studied, which is formulated as a recursive decision problem and
optimized by a dynamic programming approach. The proposed
object tracking and best-view synthesis methods have found
successful applications in MyView—a system to enhance media
content presentation of multiple-view video.

Index Terms—Dynamic programming, linear programming,
multiple object tracking, video synthesis.

I. INTRODUCTION

O PTIMIZING multiple object tracking and best-view
video synthesis is key for many multimedia applica-

tions, such as surveillance, smart rooms, sports analysis and
video presentation enhancement. In this paper, we propose
an efficient multi-object tracking method based on multiple
shortest path searching and a recursive dynamic programming
approach for best-view selection. The proposed methods have
been successfully applied to MyView, a multimedia system to
enhance interactive multiple-view video presentation.

A. Multiple Object Tracking

Tracking is a challenging task when there are complex interac-
tions between targets. It is important to be able to track multiple
objects simultaneously to obtain good results [1]. We categorize
object interactions into two classes. The first class of interactions
constrain an object’s relative location, i.e., objects tend to keep
relative positions or spatial layout during a short period of time.
The second type of interaction is object mutual occlusion, i.e., an
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object in front occludes other objects in the same region. Explic-
itly modeling interaction of objects enables tracking multiple
objects more robustly, especially in cluttered environments. But,
the search space also increases drastically compared to tracking
objects separately. Naive exhaustive search quickly becomes
intractable as the problem scales up. More efficient schemes such
as extended dynamic programming [1] are still too complex to be
applied to problems with a medium number of observations and
objects. Thus, for large scale problems, approximation schemes
are preferred. We propose a linear relaxation scheme [8] for a
specific class of multiple object tracking problems, in which
the metric for inter-object position interaction term is convex
while the intra-object terms quantifying object state continuity
along time may use any metric. The proposed scheme explores
a large search space efficiently and almost always gives a global
optimum because of the special structure of the formulation.
Fig. 1 illustrates an example of tracking squash players in a
double match using the proposed method.

Object tracking has been studied extensively. For example,
Kalman filtering [3] has been a classic scheme for single object
tracking using a Gaussian noise model. Particle filtering [4] is
a more general sequential inference method. It has been used
for tracking multiple objects such as ants [2] with complex in-
teractions. Particle filtering has also been studied for tracking
hockey players [9] in which object interaction is not explicitly
modeled. Finite set statistics [7] have recently been discovered
to be able to unify the recursive filtering formulation for both
multiple object and single object tracking. Unfortunately, op-
timal multiple object recursive filtering is computationally de-
manding. Approximation searching schemes need to be applied.

Different schemes have been studied to improve the efficiency
of optimization. Multiple hypothesis tracking (MHT) [5], [6]
updates a subset of best hypotheses and delays the objects states
decision. Greedy schemes [12], [13] have also been proposed for
finding trajectories of feature points in image sequences.

Dynamic programming (DP) is widely applied in multiple ob-
ject tracking. The single chain Viterbi algorithm can be extended
[1] to optimize multiple tracks simultaneously. The computa-
tional complexity of extended DP is , where is the
number of observations in each frame, is the number of ob-
jects and is the length of the sequence. Extended DP is thus
hard to apply to large scale problems. An efficient approximate
dynamic programming scheme [10] has been studied to find ob-
jects paths with heuristics used to determine the sequence of
paths assignments in a multiple-camera setting. While simple
heuristics such as best-track-first assignment have low computa-
tional complexity, it does not always give correct solutions when
objects have complex mutual occlusions.

Belief propagation (BP) [17] is another approach which has
been used for optimizing hand tracking. Occlusion is explicitly
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Fig. 1. Example frames from tracking Squash players in a doubles match. The algorithm assigns labels to the different players as they move around. Notice in the
third and fifth frames that one player occludes another player. Our algorithms handles this occlusion by representing this situation as a distinct state.

modeled in this method. However, multiple object tracking re-
sults in a loopy graph structure making it difficult to guarantee
convergence to a global optimum. Recently, message propaga-
tion in Bayesian networks has been applied to optimizing tra-
jectories of football players in videos [11]. This approach does
not consider track interaction among objects.

Linear programming (LP) is another approach that can be
used for more efficient search in object tracking. Optimizing ob-
ject tracks using 0–1 Integer Programming [14] has been studied
for radar data association. This formulation is different from
our proposed scheme in that a variable is defined for each fea-
sible trajectory and object tracking is solved as a set packing
problem. Other approximation methods for solving similar in-
teger LP formulations are studied in [15], [16], which turn out
to be quite similar to the sequential DP method [10]. Unlike
previous LP methods, our proposed scheme is based on a mul-
tiple-shortest-path model that tries to connect edges into paths
and therefore has much fewer variables.

Even though intensively studied, robust and efficient tracking
of multiple objects with complex interactions remains unsolved.
We propose a novel global scheme to optimize multiple object
tracks simultaneously by explicitly modeling spatial layout con-
straints and mutual occlusion constraints. We formulate object
tracking as a multipath searching problem. Each path is com-
posed of a sequence of states, e.g., locations and appearances,
of an object through time represented by nodes in a graph. Dif-
ferent tracks are constrained so that objects cannot occupy the
same spatial region. Convex penalty terms are included to en-
sure that the layout of the objects is consistent over time, i.e.,
the objects relative positions do not change abruptly from frame
to frame. The state continuity metric term along time may use
any metric. Based on the special structure of our formulation, a
linear program relaxation effectively solves the path searching
problem when paths overlap and objects occlude each other.
The relaxation solution is then rounded to an integer solution

to obtain the object locations and occlusion states. As our re-
sults illustrate, the linear program almost always yields integer
solutions that globally optimize object tracks and has low order
polynomial average complexity.

B. Best View Selection

Apart from tracking multiple objects simultaneously, another
important task is automatically selecting the best views for a
specific object and generating a smooth and natural video se-
quence. Different approaches have been proposed for best-view
selection based on view quality measurements. In computer
graphics, measurements such as the projection of polygons
or the view entropy [19] can be used for best-view selection.
Selecting the best view in computer animation [20] also uses
measurements such as visibility, relevance, redundancy and
eccentricity and an optimization step can be further applied
to the whole sequence. Face appearance [22] is a natural
feature for determining the view quality in video surveillance
applications. 3-D locations of objects and their relative poses
to cameras are other features [21] often used in best-view
selection. Even though view quality measurements have been
extensively studied, there is still little work about optimizing
best-view video sequence synthesis using noisy view quality
measurements. A naive method of video synthesis by selecting
the best view at each time instant simply based on view quality
usually works poorly, since it contains annoying abrupt view
changes due to unavoidable view quality measurement errors.

We propose a new method to optimize the synthesis of a
smooth view transition sequence based on noisy view quality
measurements. The best view video synthesis is optimized
using a dynamic programming approach. The optimization
works in a sliding window fashion that involves one previous
best-view decision and a sequence of buffered best-view can-
didates. Dynamic programming globally optimizes each video
segment based on the quality of each view and a smoothness
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Fig. 2. Segment of best-view video for object 0 based on the dynamic programming method from three camera views. The bounding boxes show the tracked
objects using the linear relaxation method. The green bounding boxes indicate the target object of the best-view video. The best-view measurement is based on the
size of the bounding boxes.

Fig. 3. Block diagram of the MyView system. Camera data is streamed to
the server with tracking meta-data added based on our LP tracking algorithm.
Clients request “best” view video data of objects which are streamed to the
client’s view application.

constraint. Experiments show that the proposed scheme gener-
ates pleasing and smooth synthesis best-view video focusing on
specific objects. Fig. 2 shows a best-view sequence for object 0
generated in real time from three synchronized camera views
using the proposed scheme.

C. Application in MyView

The object tracking and best-view selection algorithms form
the basis of a system denoted as MyView whose block diagram
is shown in Fig. 3. MyView is a media system for enhancing
multiple-view video presentation. In MyView, multiple cameras
capture video simultaneously of scenes such as sports events.
Objects in the videos are automatically tracked using our pro-
posed scheme in real time. Based on users’ requests, synthesized
video sequences focusing on the “best” view of a specific object
is generated on the fly and streamed to the user client application
running on a computer such as a laptop PC or handheld device
with multimedia support.

In the following sections, we elaborate the proposed method
in tracking, best-view video synthesis and their application in
MyView. The arrangement of the paper is as follows. In Sec-
tion II, we describe the multiple path searching model for object
tracking, the optimization formulation and the linear relaxation
method. In Section III, we describe the dynamic programming
approach for optimizing best-view video synthesis. Results of
object tracking and best video synthesis in MyView are dis-
cussed in Section IV. Section V concludes the paper.

II. OPTIMIZING MULTIPLE OBJECT TRACKING

In this section, we describe our linear programming based
method for optimizing multiple object tracks in continuous
video frames. Intuitively, at each frame we represent all the
possible spatial locations of each object from the observations
as nodes based on attributes of the objects. (In our examples,
we determine possible bounding boxes for the locations of
objects based on background subtraction or appearance char-
acteristics of objects. These bounding boxes are also used to
determine what it means for one object to occlude another.)
Over a window of frames, these nodes form a graph where a
path connecting nodes represents a possible spatial trajectory
of an object over time in the video. This is represented in Fig. 4.
However, if one object occludes another, there is a break in
the track of one object. We have a special occlusion node that
allows the path for an occluded object to be accounted for
in that particular frame if there is no other non-overlapping
location for the potentially occluded object. This graph forms
the basis for formulating a cost function based on all the
possible paths and constraints, leading to a linear program that
may be efficiently solved. The algorithm optimizes the states
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Fig. 4. Network model for multiple object tracking. Round nodes represent possible locations and appearance states of objects. Nodes shown as rectangles rep-
resent the state when an object is not in the frame due to occlusion. Nodes conflicting with a round node at a given time are shown in ovals. The spatial locations
for the objects at each time instant also subject to spatial layout constraints. A spatial trajectory of a given object is a path through the graph from the source node
to the sink node as shown by an arc. The LP algorithm finds that path.

for all the objects together. Thus, it finds consistent paths for
all the objects over a window of video frames and assigns a
meaningful interpretation of location or status of occlusion to
each object as described more formally below.

A. Problem Statement

In multiple object tracking, we need to locate objects through
a sequence of video frames. For each video frame, we assume
that there is a set of observations for each object, which are
obtained by using methods such as background subtraction or
template matching. These observations are not reliable and may
contain many false positives. Misdetection of an object may also
occur. We wish to obtain object locations in a sequence of video
frames based on the assumption that an object usually does not
change appearance and location abruptly. Apart from finding
the correct trajectories for all the objects, we also need to deter-
mine whether an object is visible in a video frame: objects may
disappear due to occlusion or moving out of the scene.

B. Network Model of Multiple Object Trajectories

In the following, we study multiple object tracking based on a
network model in which submodels in our formulation interact
with each other. This approach contrasts with the previous trellis

model used in single-chain dynamic programming. Fig. 4 illus-
trates the network model of the multiple object tracking that we
use.

In Fig. 4, an object’s possible location and appearance states
are represented as round nodes. For a given frame, hypothesized
locations (i.e., observations) for each object may be different,
and therefore the subnetwork for each object may contain a dif-
ferent number of nodes. The nodes represented as rectangles in
Fig. 4 are the occlusion nodes that provide a node to represent
that an object is occluded and does not have a spatial location. A
source node and a sink node, shown as diamond nodes in Fig. 4
are also included for each object subnetwork to represent the
start and end of the object tracking sequence. Sink nodes are
included just for convenience; they do not correspond to states
of objects. The solid arcs between nodes indicate possible state
transitions. A connected set of nodes between a source and sink
node represents the spatial trajectory of an object.

We also model mutual occlusion among objects in the net-
work. A spatial conflict set is defined for each node in the net-
work. Nodes in a spatial conflict set correspond to object states
occupying the same spatial location. As shown in Fig. 4 the
spatial conflict set for node includes the node itself and
nodes in the ovals in the other object subnetworks that would
overlap the region of . As an example, in Fig. 5, objects
one and two conflict in space if the two bounding boxes are suffi-
ciently close. Note that the occlusion node for each object never
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has a spatial conflict, so it will never be in a spatial conflict set.
This setting enforces an object to either occupy a spatial location
that does not conflict with other objects or disappear in the video
frame. Only one node in a spatial conflict set may be selected for
connecting an object path as this represents the visible object at
that location in space. Once a node is selected for one of the ob-
jects, all the other objects must either select a node that includes
a different spatial location for that frame or the occlusion node.
The above condition is defined as the object mutual occlusion
constraint. We also include a spatial layout constraint for all the
objects. This is defined in the network model to constrain object
relative locations at each time instant. Multiple object tracking
can thus be modeled as finding optimal paths from the source
nodes to the sink nodes for all objects, which satisfies the object
interaction constraints.

We use the following notation to precisely define the problem
in an LP framework. For object , its source node is denoted as

and its sink node as . corresponds to the location and
appearance of object in frame 0. The source node also pro-
vides an initial template node for computing trajectory costs as
described below. For each video frame, we insert nodes corre-
sponding to all the observations of object at each time instant
together with an occlusion node. denotes the node indi-
cating that object is assigned state in frame . The occlu-
sion node is always the node with the largest state number .
The source node is also denoted as , and the sink node

as , where is the length of video sequence. We
connect nodes in successive frames with arcs as shown in Fig. 4
using a fully connected pattern. For most applications, partially
connected patterns can also be used to simplify the problem
based on heuristics, for example, that objects do not move far
between successive frames.

A cost is assigned to each arc, which in-
dicates the cost of state at time and state at time being
on the trajectory of object . The cost function can be convex or
non-convex. An arc’s cost usually contains two parts: the cost of
choosing a state at a time instant and the cost of state transition
from to . In this paper, the cost of arc connecting node
and is defined as shown at the bottom of the page,
where function compares the similarity of an object appear-
ance corresponding to nodes in the network, e.g., by comparing
color histograms in bounding boxes; computes the spatial
distances of two states, e.g., the distance of two bounding boxes.

and are constant coefficients to control the weight of tem-
poral smoothness. and are constant costs penalizing
when an object disappears or reappears. compensates for
the mean position and color difference for an object at succes-
sive frames. is a constant greater than the color histogram
difference for the same object and less than the one for different
objects. These constants are therefore the functions of sensor

Fig. 5. Overlapped regions. (a) Partially overlapped regions; (b) Fully over-
lapped regions.

detection, state transition, death and spawning probabilities and
can be set by training. But, they are not sensitive and therefore
manually setting is found sufficient. Thus, if an arc leads into
an occlusion node or a sink node, it bears a constant cost. The
cost of an arc from an occlusion node to a nonocclusion node
includes the similarity measurement of the destination node to
the template object (the source node) plus a constant. When both
of the nodes are non-occlusion nodes, the edge connecting the
nodes has weight equaling the summation of three terms: the
similarity of the target node to the template object, the appear-
ance similarity of detections in two successive frames and a term
that penalizes large spatial displacement between video frames.

In modeling the object occlusion constraint, we need to
specify the spatial conflict set for each non-occlusion node

. The spatial conflict set for node is denoted as
which includes and nodes from other sub-

networks whose regions are highly overlapping with the region
of node . To determine whether nodes are included in
a spatial conflict set, we consider two types of overlapping
regions. The first one includes partially overlapped regions
as shown in Fig. 5(a). The second one includes completely
overlapped regions as shown in Fig. 5(b). There are multiple
approaches to determine whether to include a node in the spatial
conflict set. For example, one approach uses the probability of
two bounding boxes overlapping. This probability is calculated
using the ratio of the overlapping area to the average area of
the rectangular regions. If the ratio is sufficiently large, the
two regions cannot be visible at the same time and nodes
corresponding to these regions are in the same spatial conflict
set. Another approach uses a simpler measurement based on the
total city-block distance of the 4 corners of the two bounding
boxes. In this case, if the difference is below some threshold,
then the two bounding boxes are overlapping and the nodes
should be included. If the difference is large then either the
objects are not overlapping or the size of two objects is very
different and the corresponding nodes do not belong to a spatial
conflict set. We use this latter approach in our examples.

Apart from the occlusion constraint, we also would like to
keep the spatial layout of objects stable over a short period of
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Fig. 6. Spatial layout consistency: the relative locations between each pair of
objects tend to keep unchanged through time.

time. To model this constraint, we keep the spatial displacement
vectors between objects as similar as possible across time. As
shown in Fig. 6, the vectors from object to object tend
to remain unchanged at time instant and instant , i.e.,

tends to be a small
number. In fact, vector can be more than 2-D. For example,

can be a 4D vector representing the 2 corners of bounding
boxes. This second constraint is a soft one and implemented as
a regularization term in the objective function.

C. Discrete Optimization

An energy function for optimizing object tracks can thus be
written as follows:

where is the location of object at time instant
. For instance, if we use bounding boxes to quantify

the location of an object, is a 4-element vector
in which

is the top-left corner coordinate of the bounding box and
is the right-bottom corner coordinate.

is the set of neighboring objects. is a coefficient to control the
weight of the spatial layout regularization term. In this paper,
we assume all the object pairs are neighbors, i.e., contains
all the object pairs. We assume that the norm is the
norm. Using the norm enables us to relax the optimization
into a simpler linear program. In fact, the norm can also be
used and the relaxation is a quadratic program which can also
be efficiently solved. In the following, we use the norm and
LP relaxation to illustrate the concept.

Because of path interaction, searching algorithms need to
consider all the paths simultaneously and thus have to search
a large space. Naive exhaustive search is not a tractable op-
tion. This optimization problem has convex inter-object
regularization terms, while the intra-object regularization term

Fig. 7. Linear programming formulation. Each edge in the network is associ-
ated with a variable � and each node with a variable y. These variables are 1 if
the corresponding edges or nodes are on the shortest paths and otherwise 0. The
nodes in the gray regions correspond to the conflict nodes in which only one of
them can be on the shortest paths.

embedded in the arc cost may use any metric. As shown in the
following section, this type of problem can be relaxed into a
convex program that can be efficiently solved.

D. Linear Relaxation

To convert the above discrete optimization problem into a
linear programming relaxation we embed the discrete search
space into a continuous one as follows.

We convert the objective function into a linear one by
introducing variable to indicate whether
arc is on the path of object . If the arc
is indeed on a path, the variable should be 1 and otherwise
is 0. We also define variable to be the summation
of corresponding to all the incoming arcs of node .
Let be the number of nodes for object at time

. Thus,
indicates whether node is on the path of object . In
the ideal case, will be 1 if the node is on the path and
0 otherwise. Object location is represented with variables

is the th element of the location of object at time
equals the linear combinations of observations with

coefficients . Fig. 7 illustrates these notations with a
simple case. Based on the energy function defined, the cost
of a path is thus the linear combination of edge costs plus
an norm regularization term. By introducing non-negative
auxiliary variables, we can further turn the norm terms into
linear functions. The path finding can therefore be relaxed into
the following linear program:
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subject to

In the above equation, is the location vector, e.g.,
bounding box coordinates, corresponding to node . Oc-
clusion nodes correspond to a special location, e.g., zero-size
bounding box at the center of an image. and

are non-negative auxiliary variable pairs, which are
used to turn the norm smoothness term into a linear function.

We use a common linear programming trick [18] to convert an
absolute value term into a linear function. In the constraint, the
difference of the auxiliary variable pair and
equals the location vector difference of two neighboring objects,
for which we would like to compute the absolute value. When
the linear program is finally optimized, at least one of the auxil-
iary variables in each pair will be zero. Otherwise, we can al-
ways subtract the smaller one of the pair from each variable
and get a feasible solution with smaller objective function and
one variable in the pair becomes zero, which contradicts the op-
timum solution assumption. Therefore the sum of the auxiliary
variables in the objective function equals the absolute value of
the spatial consistency term in our formulation, when the LP is
optimized. The linear program is equivalent to the original dis-
crete optimization if the linear cost term equals the original cost
term, which will be the case if are further constrained to be 0
or 1. The linear program is thus a linear approximation or relax-
ation of the discrete optimization problem.

The first three constraints set out the unity flow continuity
constraints that are necessary conditions for the solution to be a
path for each object. The constraint on guarantees that no two

paths go through the same spatial conflict set, i.e., if one path
goes through a position other tracks tend to pass these positions
will be occluded. The spatial conflict set is also illustrated in
Fig. 7.

If we constrain the variables of to be 0 or 1, the integer pro-
gram exactly solves the multiple object tracking problem. We
drop the integer constraint and obtain a linear program relax-
ation which can be solved efficiently. There is no guarantee that
the linear program always gives integer solutions for . For real
problems, most of are indeed 0 s or 1s and therefore gives
the globally optimized solution. As shown in the experiments,
the linear program has a high probability of directly giving the
global optimal solution.

If the solution is not integral, we have to round the result
into an integer solution. The rounding process is as follows. At
each time instant, we find the maximum in the corresponding
column of each object subnetwork. Recall that indicates the
probability of an object occupying a spatial location or in the oc-
clusion state. We then round the largest of all nodes at the time
instant to 1 and of its conflict nodes and nodes on the same ob-
ject subgraph at this time instant to be 0. These nodes are then
labeled as visited. We repeat the above process to set the next
largest to be 1 and zeros the other conflict nodes and nodes in
the same object subgraph. We repeat this process until we tra-
verse all the nodes. Now, we have a rounding result, where the
non-zero indicates object at time has state , which
either corresponds to a spatial location or an occlusion state. The
simplex method for linear programming has exponential com-
plexity in the worst case. Linear programming is fast for real ap-
plications [18]; for our LP formulation, its average complexity
is approximately , in
which is the number of observations for each object, is
the number of objects and is the number of frames in opti-
mization. In comparison to extended DP, the linear program has
much lower average complexity.

Example 1: To illustrate how our approach works we track
two objects in 340 consecutive video frames. We assume that
object histograms are known. At each time instant, potential ob-
ject locations are detected as bounding boxes. Each bounding
box is represented using a 4-element vector representing two
opposite corners. Spatial conflict sets are then determined for
each bounding box. In this example, all the bounding boxes de-
tected are candidates for object 0 or 1, hence, the subnetworks
for each object are the same. Grayscale color histograms with
64 bins are used as the features for object appearance identifi-
cation. In this example, a neighboring set only contains one pair

. We build a linear program for this problem based on our
proposed LP relaxation scheme. The LP takes 4628 simplex iter-
ations. The tracking result is shown in Figs. 8 and 9. The top-left
corner and -coordinate of the bounding boxes for both ob-
jects are shown in Fig. 8(a) and (b). For this example, LP relax-
ation has integer solutions for and therefore achieves its global
optimum. As shown in Figs. 8 and 9 the object paths are quite
good for both and coordinates even when the objects overlap
each other. As a comparison, we apply DP with best-track-first
assigned heuristics to the same data. The energy function of DP
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Fig. 8. Tracking result of the proposed method for example 1.

Fig. 9. Selected images of tracking two objects in 340 successive video frames using the proposed scheme. Green and blue labels indicate object 0 and 1 respec-
tively.

Fig. 10. Tracking result of approximate DP for example 1.

is the same as the proposed scheme except for the spatial layout
consistency term. Approximate DP is not easily extended to in-
clude such regularization terms since it optimizes each track
separately and then assigns tracks sequentially. Figs. 10 and 11
show the tracking result of approximate DP. In this example,
DP first picks the object 0 track as a better fit and determines
the track for object 1 after removing assigned boxes for object
0. As shown in this example, greedy track assignment selected
wrong labels at the first and third occlusion instances. Simply

reducing the occlusion label cost will not solve the problem and
it also causes many missed detections.

E. Online Multiple Object Tracking

We have studied an LP based method to track multiple ob-
jects by optimizing tracks in a sequence of video frames. This
scheme can be extended to online video tracking by applying the
tracking scheme as a moving window filter. For our long video
sequences we use a video segment window size of between 15
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to 300 frames with one frame overlapping between segments.
An object list keeps the histogram of object templates. The lo-
cations of object templates are also updated at the end of each
video segment. The tracking network is constructed by using
the templates as “observations” in the zero stage and another
successive video frames are used in constructing the rest of the
network.

Objects can also be detected automatically for background
subtraction based object tracking. If we find a consistent object
which is not on the track of previous video segment, we insert it
into the object list. The consistency is measured by a backward
and forward testing approach based on the proposed tracking
scheme. We check the duration of visibility and the cost of track
in backward and forward tracking. If a new object has track cost
lower than a threshold and appears in more than 75% of the
testing period, it is inserted into the template list.

III. OPTIMIZING BEST VIEW SEQUENCE SYNTHESIS

In this section, we further study an algorithm to optimize the
best-view selection so as to generate a smooth video sequence.
Finding the best view in a scene relates to the objects that are in
the view, thus, is a natural extension to the tracking objective in
the previous section. The locations of objects in video are repre-
sented as bounding boxes in each video frame. For each object,
there is a “best” view in all the camera views. The best view
is extracted from among all the camera’s views by using some
view quality measure. For example, the size of the bounding
box for an object at one time instant could be used for such
measure. Other measurements such as face orientation, body
pose and object activity in the scene could also be taken into
consideration. The focus of our work is not to improve or de-
fine the best-view measurement but rather to design a scheme
to optimize the best-view video synthesis using a given noisy
best-view measurement that has been defined for the particular
content in the scene.

The naive method of selecting the best view at each time
instant based on view quality measurement does not typically
yield smooth video transitions. Errors and noisy measurement
cause error decisions and result in poor synthesized video with
fast cuts from one view to another. To solve this problem, we
propose to jointly optimize a cost function that depends on both
the view quality and the view transition smoothness so that a
pleasing best-view video sequence can be composed. As de-
scribed below, our approach is like a constrained filter that at-
tempts to optimize the best-view selection over time constrained
by the temporal smoothness. The best-view decision filter works
in a sliding window fashion, in which the sliding window spans
from a previous frame (indexed as ), the current frame (0)
to the next frames. The optimization problem for each
sliding window is written as

where is the frame number; is the best view for time and
is the previous labeled best view; is the cost of se-

lecting as the best view at time instant . is a distance
function that penalizes jumps from views in adjacent time in-

stants. Here we define , which thus has a 0
cost for choosing the same camera view for two successive time
instants or a constant cost otherwise. The output of the optimiza-
tion is a sequence of view selections for
the current sliding window. We pick the best view for the cur-
rent frame as . The sliding window is then moved to the next
frame and we repeat the optimization procedure iteratively.

The above optimization problem can be solved using dynamic
programming. The procedure of best-view estimation based on
DP is as follows. We assume that the sliding window length is

and there are a total of views in the optimization (i.e.,
cameras). Remember, each frame has an associated view quality
measurement which changes depending upon the context re-
quiring this algorithm to possibly run many times depending
upon the user’s needs.

Algorithm: Best View Selection

1. Choose as the view with the best-view measurement;

2.

3. For to

For to

4.

5. For to 0

Output current best view

6. Move the sliding window forward; Goto 2;

IV. EXPERIMENT RESULTS FOR TRACKING AND BEST-VIEW

This section describes results obtained for both our LP
tracking approach (Section IV-A) and Best-View method
(Section IV-B). The tracking results are considered for various
settings including moving toy objects, people moving in a lab
setting, a single squash games and a multi-person squash games
which is quite challenging. We also compare the tracking using
LP with a DP approach for some of the experiments. The
best-view study looks at people in a lab setting to present how
it works in MyView.

A. Linear Relaxation Tracking

We report our results using our method for tracking mul-
tiple objects on four different video sequences. These video se-
quences are in CIF format with frame rates ranging from 15 to
30 frames/s.

1) Tracking Two Stuffed Animals: Fig. 12 shows the tracking
result of the proposed method for a 307-frame video. Two toy
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Fig. 11. Selected images for approximate DP result in Example 1.

Fig. 12. Tracking two toy objects with the proposed scheme. Selected frames from 307 frames.

Fig. 13. Squash. Selected frames from 1351 frames.

objects are tracked through the video sequence. There are com-
plex occlusions between the two objects. The templates for the
two objects are set using the first video frame. A subimage is
used as the feature in tracking. Object observations are obtained
at local peaks of the template matching map. Approximately 80
detections are found for each object in each video frame which
appear as nodes in the graph providing many path possibili-
ties. In this experiment, LP optimizes each 20-frame segment
including the template frame in a sliding window fashion. De-
spite complex occlusions, the proposed method tracks the ob-
jects correctly along the video sequence.

2) Tracking Fast Moving Squash Players: In another exper-
iment, we apply the proposed scheme to a 1351-frame squash
video sequence with two players as shown in Figs. 13 and 14.
The candidate objects are detected by background subtraction
similar to the method used in [10]. The thresholded binary
background subtraction image is convolved with rectangular
boxes with width-height ratio of a standing pose human in
different scales. The result is a 3-D image with coordinates –

and scale. Non-maximum suppression is then applied to the
3-D image to find all the possible object locations and scales.
The bounding boxes further shrink to fit objects boundaries
tightly. The video includes complex object interaction and
mutual occlusion. Noisy background subtraction also makes
object tracking a hard task.

In this experiment, we convert the color sequences into
grayscale ones and use a rough 64-bin histogram for the fea-
tures. The proposed linear program relaxation is then applied to
the video sequence in a sliding window fashion as done in the
first experiment. The proposed scheme accurately follows the
object locations through the video sequence. Fig. 13 illustrates
sample frames of the tracking result and Fig. 14 shows the
object locations at each time instant through time (occluded
objects are not shown). In the 1351-frame video sequence,
object 0 has seven wrong label assignments and object 1 has
five wrong detections. The average object tracking error rate
is about 0.01 per frame for this example. LP also has a high
probability of directly obtaining the global optimal solution.
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Fig. 14. Object locations for two squash players. (a) X-Locations of objects; (b) Y-Locations of objects.

Fig. 15. Tracking three people with the proposed scheme. Selected frames from 2431 frames.

Fig. 16. Tracking three people with separate DP for each object. Selected frames from 2431 frames.

Only three segments do not have fully integer solutions for in
75 video segments.

3) Comparison With DP on Tracking Three People Walking
in an Office: Fig. 15 and and Fig. 18 show the result of tracking
three objects with the proposed method for a 2431-frame video.
In this experiment, we use background subtraction to detect
bounding boxes for potential object locations. The features of
objects are grayscale image histograms with 64 bins inside a
bounding box. Bounding boxes detections are noisy because of
the large compression ratio of the video and complex object in-
teraction. The scales of bounding boxes are also not accurate,
which results in large portions of the background inside some
bounding boxes. The sliding window setting is the same as pre-
vious experiments. Objects are automatically detected in this ex-
ample using the method in Section II-E.

The proposed scheme can deal with complex occlusions and
objects moving out of the scene and coming back. Object 0 has
five wrong detections, object 1 has 22 wrong detections and
object 2 has 125 wrong detections. Overall the error rate is 0.06
per frame. In this experiment, four segments do not have fully
integer solutions for in a total of 135 video segments.

To compare methods, we apply DP to each single person with
exactly the same network weight settings. The result is shown in
Fig. 16. Because no object interaction constraint is enforced, DP
often assigns different labels to the same object and sometimes
fails to locate an object in the scene. Simple heuristics do not al-
ways give the correct solution. DP with best-track-first assigned
heuristics has 67, 37, and 319 wrong tracking errors for object
0, 1, and 2 respectively. The error rate is 0.17 per frame. Fig. 17
shows sample video frames where the LP approach improves
the tracking result.
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Fig. 17. Sample frames where DP with simple heuristics does not yield correct solution while the proposed scheme does. (a)–(c) show sequence DP frames.
(d)–(f) show results with the proposed method.

Fig. 18. Objects locations for 3-people tracking. (a) X-Locations of objects; (b) Y-Locations of objects.

Fig. 19. Double Squash. Selected frames from 500 frames.

4) Tracking 4 Players in a Double-Squash Game: In Figs. 19
and 20 we applied our method to a 500-frame double-squash
video sequence. There are four objects in the video and there are
about ten detections in each frame. The players in the same team
wear the same clothing. In this experiment, we use the proposed
scheme to optimize tracking in the whole video sequence rather
than shorter segments using a sliding window. We would like to
obtain a global optimal solution considering only the occlusion
constraint.

We use a basic branch and bound method to obtain the global
solution. Our method finds the global optimal in three minutes
using a 2.6 GHz PC which is much faster than extended DP
which needs about an hour to compute the result. Since the LP
solution is very near the global optimum, branch and bound con-
verges very quickly. We use the branch and bound method here

to obtain a global optimum so that we can have a fairer compar-
ison with extended DP.

As shown in Figs. 19 and 20, the tracker works well in fol-
lowing multiple objects during a long sequence. In Fig. 20,
when objects are occluded, their spatial locations are set to (1,1),
which are shown as abrupt drops in the curves. Even though
we obtain a global optimal solution, the result is not perfect.
Sometimes errors occur for dark team players (player 0 and 2)
when the two players occlude each other and cause their identi-
ties to be exchanged. Such errors happen due to both unreliable
bounding box detection using background subtraction and oc-
clusion between objects with very similar appearance.

5) Processing Time Considerations: Fig. 21 shows typical
average running times of the linear program using a 2.6 GHz
PC. Random observations and color histograms are generated in
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Fig. 20. Objects locations for four squash players. (a) X-Locations of objects; (b) Y-Locations of objects.

Fig. 21. Complexity of the proposed scheme.

TABLE I
TYPICAL RUNNING TIME FOR THE PROPOSED METHOD AND

EXTENDED DP FOR OPTIMIZING 20 VIDEO FRAMES WITH THREE

OBJECTS AND 50 OBSERVATIONS IN EACH FRAME

each frame. Each experiment is repeated ten times and running
times are averaged. Fig. 21(a) shows the typical running time
of our method for different numbers of observations. Fig. 21(b)
shows the typical running time of our method for different num-
bers of objects.

Simultaneously optimizing all the tracks using the Viterbi
algorithm has considerably higher spatial and temporal com-
plexity. In one case as shown in Table I, extended DP takes more
than five hours to optimize three objects in 20 video frames with
50 observations in each frame, while the proposed scheme con-
verges in tens of seconds. Thus, our method requires consider-
ably less computation time than extended DP and still achieves
good accuracy.

B. DP Best View Selection

We test the best-view selection method for multiple-view
video sequences captured in our MyView system. In this exper-
iment, three cameras captured videos synchronously. Network
cameras are used in the experiment. The low quality of the
video makes reliable object tracking a challenge. Camera syn-
chronization is done by pulses propagated over TCP/IP along
an Ethernet generated by a synchronization server. There are
three human subjects moving around in the scene. Because our
tracking method works robustly even when there are occlusions
and complex object interactions, we can track multiple objects
using each camera independently providing good estimates of
the three subjects in each view. Video from each camera is
processed by a 2.6 GHz Linux machine. Object tracking is done
online with the frame rate of about 20 frames/s. The quality of
view measure for a given object is estimated by the size of the
bounding box for that object, thus, we assume that we want to
see views of an object that show the largest view. The best-view
video for each object is also generated on the fly by the video
server, which optimizes the synthesized video by the proposed
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Fig. 22. Selected best-view video frames. Row 1: Best-view video frames for object 0. Row 2: Best-view video frames for object 1. Row 3: Best-view video frames
for object 2. Each column corresponds to the same time instant. Notice that in each view the object of interest is generally large and close to the camera selected.

Fig. 23. Video generated focusing on object 0 using videos of three video cameras. The bounding box of the focus object is shown as green.

dynamic programming method and then streams the video to
the client.

Fig. 22 shows the best-view selection result for each of the
three objects. Each column corresponds to the same time instant
for the multiple-view video; Each row corresponds to the se-
lected best-view frames for a given object. Bounding boxes are
tracking results using the linear relaxation method. The green
bounding box indicates the focus object in each row. Fig. 22
clearly shows the effectiveness of the proposed method in fo-
cusing the best view on the specific objects.

Figs. 23–25 are expanded video sequences of Fig. 22 for
each object, which illustrates the smooth video transitions. The
camera selection curves are shown in Fig. 26(a)–(c). Experi-
ments showed that the dynamic programming approach not only
yields the optimum decision in a recursive fashion but also gen-
erates visually pleasing best-view video sequences.

V. CONCLUSION

In this paper, we address the problems of optimizing object
tracking and best-view video synthesis. We propose a novel
framework for optimizing multiple object tracking that can be

solved efficiently based on a linear programming relaxation.
The proposed scheme explicitly models track interaction such
as the spatial layout constraint and object mutual occlusion.
Experiments show that the proposed global scheme works
robustly in tracking objects with complex interactions in long
video sequences. The linear program relaxation can also be
solved more efficiently than previous methods such as extended
dynamic programming and has a high chance of obtaining the
global optimum. It also gives better results in finding multiple
trajectories simultaneously than greedy search schemes such
as sequence DP. We further propose a dynamic programming
approach for optimizing best-view video sequences. Realtime
video tracking and best video generation have been imple-
mented in our MyView application. The proposed tracking and
best-view selection methods are also useful for applications
such as surveillance, smart rooms, sports game analysis, and
broadcasting systems. Object tracking in very large systems
such as tracking players on a sports field using hundreds of
cameras is still a challenging problem in both computation
complexity and robustness. We are now actively studying
how to apply the proposed method to real-time large scale
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Fig. 24. Video generated focusing on object 1 using videos of three video cameras. The bounding box of the focus object is shown as green.

Fig. 25. Video generated focusing on object 2 using videos of 3 video cameras. The bounding box of the focus object is shown as green.

Fig. 26. Camera selection through time. (a). View selections for object 0. (b). View selections for object 1. (c). View selections for object 2.

systems such as a camera network for surveillance and sports
broadcasting.
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