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Shadow resistant tracking using inertia constraints
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Abstract

In this paper, we present a new method for tracking objects with shadows. Traditional motion-based tracking schemes cannot usually
distinguish the shadow from the object itself, and this results in a falsely captured object shape. If we want to utilize the object’s shape
information for a pattern recognition task, this poses a severe difficulty. In this paper we present a color processing scheme to project the
image into an illumination invariant space such that the shadow’s effect is greatly attenuated. The optical flow in this projected image
together with the original image is used as a reference for object tracking so that we can extract the real object shape in the tracking process.
We present a modified snake model for general video object tracking. Two new external forces are introduced into the snake equation
based on the predictive contour and a new chordal string shape descriptor such that the active contour is attracted to a shape similar to
the one in the previous video frame. The proposed method can deal with the problem of an object’s ceasing movement temporarily, and
can also avoid the problem of the snake tracking into the object interior. Global affine motion estimation is applied to mitigate the effect
of camera motion, and hence the method can be applied in a general video environment. Experimental results show that the proposed
method can track the real object even if there is strong shadow influence.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Shadows present a confounding factor for correct object
tracking. Traditional motion detection schemes cannot dis-
tinguish the moving object and the shadows moving with
it. Therefore, object tracking results based on traditional
schemes usually produce contours based on a combination
of the object and its shadow. This kind of result will pose
severe difficulties if the contour is further passed to an an-
alyzer for object recognition. Eliminating the shadow and
tracking the real contour of an object is a challenging prob-
lem. Different schemes have been presented to try to atten-
uate the shadow’s influence in applications such as object
tracking and still image segmentation. In Ref. [1] the shadow
detection and elimination problem was studied in the con-
text of road surveillance. In the specific application, lighting
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conditions were restricted to sunlight, the internal and exter-
nal parameters of the video camera were fixed, and the target
object was restricted to a walking human being. A method
was presented for locating the real position of a walking
human by extracting the core lines of the human and the
core lines of the shadows based on a motion detection map.
In Ref. [2] a geometrical scheme based on stereo vision
was presented for shadow elimination in surveillance video
tracking. The scheme is based on image subtraction, with
the image captured by one camera first projected onto the
road plane and then further projected onto the image plane
of the second camera. The road maps of two images should
map perfectly while other parts such as walking humans will
not map well. The difference of the two images, thresholded
by a given value, yields a mask eliminating everything on
the road plane including the moving shadows. In Ref. [3],
simple illumination invariant features were applied to obtain
an image, which apprehends differences between surface
materials. Since cast shadows only change the illumina-
tion of backgrounds, the illumination invariant features will
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attenuate shadow effects. The method is applied in the con-
text of still image segmentation. In Ref. [4], a statistics
method is presented for pixel classification. The features
used include the luminance and normalized chrominance
vector. The color change of a pixel is described by multiply-
ing each color channel by a constant, via a diagonal model of
color change. Pixels are classified into three classes: back-
ground, foreground, and shadow, based on maximum a pos-
teriori classification. Spatial information is also applied to
improve the dense region classification result. In Ref. [5], the
shadow detection problem is studied based on a model sim-
ilar to the Phong model. Heuristic methods are presented to
classify the shadow and foreground object. A recent shadow
detection scheme designed for outdoor scenes is presented
in Ref. [6].

In this paper, we present a different method, based on a
physics-based illumination invariant color space, and on an
inertia-enhanced snake model, for reliable object tracking
in a general video environment. If lighting is approximately
Planckian, then in Wien’s approximation the resulting sim-
ple exponential form of the illumination spectrum leads to
the conclusion that as temperature T changes, characterizing
the illumination color, a log–log plot of two-dimensional
{log(R/G), log(B/G)} values for any single surface forms a
straight line provided camera sensors are fairly narrow-band
[7–9]. Thus, lighting change reduces to a linear transforma-
tion along an almost straight line, even for real data with
only approximately Planckian lighting. For a target with
many paint patches, mean-subtracted log–log plots all clus-
ter around a single line through the origin that characterizes
lighting change. The invariant image is thus the gray-scale
image that results from projecting log–log pixel values
onto the direction orthogonal to lighting change, within
and outside the umbra; the projection greatly attenuates
shadowing.

Based on this color projection, we further present an
inertia-enhanced snake model for tracking objects with
shadows. We devise two inertia terms. The first term is
based on the predictive contour, and the second is based on
a new chordal shape descriptor. These two additional terms
force the active contour to converge to a shape similar to
the one in the previous video frame. The inertia energy
term makes the snake ignore distracting elements, and thus
no precise initial contour is needed. Moreover, if the object
stops moving temporarily, the snake will evolve according
to the inertia term in the predictive contour and chordal
constraint term and converge to a similar shape to the pre-
vious frame and also correspond to the motion prediction
result. We adopt an affine motion model for global motion
estimation and camera motion compensation with the result
that our scheme can work in a general video environment.
Comparing to other standard contour tracking schemes
such as [10–12], the proposed scheme does not need a
training process. The complexity of the algorithm is compa-
rable to the standard snake and is thus suited for real-time
applications.

The organization of the paper is as follows. We first
study shadow-invariant image space in Section 2. We
show that under Planckian lighting, the log–log plot of ra-
tios (log(R/G), log(B/G)) forms a straight line for each
material, for narrow-band sensor cameras. Based on this
observation, we set out a camera calibration scheme for
shadow-invariant image generation in Section 2.1. In
Section 3, we present the tracking scheme based on an in-
ertia snake model and shadow-invariant image for shadow
resistant video tracking. The modified snake equation is
studied in Section 3.1. Contour prediction based on iterative
conditional modes (ICM) is presented in Section 3.2. In
Section 3.3, we show how to generate external forces based
on global motion compensated motion detection and gra-
dient vector flow. The numerical scheme for the proposed
snake equation is presented in Section 3.5, and the tracking
system is presented in Section 4. Experiments, results, and
discussions are presented in Section 5.

2. Shadow-invariant image space

Shadows are usually classified as self-shadows and cast
shadows. Self-shadows result from part of the object block-
ing some light from another part of the same object. Self-
shadows usually pose a minor problem for tracking tasks.
However, cast shadows, caused by one object shadowing an-
other object in the scene, can be caused by the background
objects shadowing the tracking target or the target’s own
shadow on the background object. We are most interested
in cast shadows, especially the shadow moving along with
the target object. It is well known that the basic difference
between a shadow area and its surrounding non-shadow
area is due to lighting change. Since shadows are caused
by illumination change, color constancy methods present
an appropriate method for shadow detection and elimina-
tion. By using an illumination-color and intensity invariant
scheme, we extract the quantity characterized by the ob-
ject’s surface reflectance property only, and thus eliminate
the influence of illumination change entirely. The difficulty
caused by shadows in motion detection and object shadow
classification can thus be solved by applying a particu-
lar type of color constancy scheme to obtain an invariant
image.

In this section, we present a color constancy scheme based
on the assumption of Planckian lighting and approximately
delta-function sensors and show how to generate the invari-
ant image. Planckian lighting is a good approximation for a
wide range of lighting sources, such as the sun and many in-
door illuminants. The seemingly strict constraint of narrow
sensors is also found not to pose difficulty for real applica-
tions of shadow resistant tracking. We will show that such
a “rough” approximation is usually good enough to greatly
attenuate shadows in tracking an object. A discussion of the
model, compared to real cameras and illuminants, is given
in Ref. [7].
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Invariant image. Consider a Lambertian surface illumi-
nated by a Planckian lighting. The spectral power distribu-
tion of a Planckian lighting source can be well approximated
by Wien’s approximation [13]:

E(�) = Ic1�
−5e−c2/�T , (1)

where I is the intensity of the lighting source, T is
temperature, and c1 and c2 are constants. We assume that
illumination is from direction a, and that the sensors of
the image-capturing device are narrow-band, such that
they can be well approximated with spike sensitivities
Qk(�)=qk�(�−�k), k =1, 2, 3. Here, we consider only the
usual 3-sensor cameras; however, our results can be easily
extended to the situation where there are more sensors. Fur-
ther, we ignore the color response change of a point with
respect to the viewing angle (i.e., we adopt the Lambertian
assumption). Based on the above, the sensor response at
point x corresponding to sensor k is

�k(x) =
∫

E(�)a · n(x)Sx(�)Qk(�) d� k = 1..3,

= c1a · n(x)ISx(�k)�
−5
k e−c2/�kT qk , (2)

where n(x) is the normal vector of the object surface
parametrized by image plane coordinates x, corresponding
to surface spectral reflectance function Sx(�). For 3-sensor
cameras, it was noted that plotting the set of log-ratios
r = log[�1/�2] and b= log[�3/�2] for a single surface under
various illuminants produces a line in the resulting 2-space
[7–9]. Here we explicitly derive this linear relationship
between the two log-ratios for a given reflectance surface:

b − log

(
q3S(�3)�

5
2

q2S(�2)�
5
3

)

=
[
r − log

(
q1S(�1)�

5
2

q2S(�2)�
5
1

)]
�3�1 − �2�1

�1�3 − �2�3
. (3)

From Eq. (3), each reflectance surface is characterized
by a line in the coordinate system (log(R/G), log(B/G)).
The slope of the line is determined only by the center wave-
lengths. In the rest of the paper, we call the orientation of
this line, determined by the camera sensors, the characteris-
tic orientation for the camera. For a given camera, since the
parameters qk and �k , k = 1..3 are fixed, the position of
the line is determined only by the surface, characterized by
the surface spectral reflectance function S(�). Since, for a
given camera, all the log–log ratio lines for various surfaces
have the same orientation, to distinguish between different
materials we simply need to project the log–log ratio points
(log(R/G), log(B/G)) onto the orientation orthogonal to
the camera characteristic orientation to produce a quantity
encapsulating the different reflectance properties, invariant
to the illumination conditions. And if we are invariant to
lighting, then we should also be approximately invariant to
shadowing.

We call the gray-scale image resulting from transform-
ing the log–log ratio corresponding to each pixel in a
color image in this manner the invariant image. In the
following paragraphs we consider only 3-sensor cameras,
and assume �1 = R, �2 = G, �3 = B and r = log[R/G],
b = log[B/G].

2.1. Camera calibration

Because different cameras have different color character-
istics, they must be calibrated before being used in our track-
ing scheme. Camera calibration can be done on-line using
real videos. However, in many applications, pre-calibration
of the camera based on a calibration object is applicable
and can give more precise calibration result. In this section,
we study camera calibration based on a calibration object
for illumination-invariant image generation. For real cam-
eras, the sensor sensitivity curves of sensors are not strictly
delta functions and Eq. (3) is thus an approximation. In
practical situations, the log–log ratio plot corresponding to
one material under different lighting is not strictly a straight
line. Nevertheless, amongst a set of materials the log–log
ratio plots generally have some fixed dominant orientation.
An alternative to camera calibration is to use an entropy
minimization technique [14] based on the information in
each frame.

From Eq. (3), the dominant orientation is only a function
of the camera sensors and does not correlate with the lighting
condition or the surface material. Therefore, the calibration
process for a specific camera need only be done once and
can then be used for any conditions. Here, we omit the ef-
fects of gamma correction on images, but in fact this correc-
tion has no effect on the mathematics, and simply changes
the characteristic orientation [9]. If lines given by Eq. (3)
are in practice not quite straight, sensors can be “sharpened”
to make them straight [15]. To calibrate, we use a color
target comprised of paint patches. Assume P is the collec-
tion of log–log ratio pairs {(ri

n, b
i
n)|n ∈ N, i ∈ I} where

ri
n = log(Ri

n/Gi
n) and bi

n = log(Bi
n/Gi

n). Here, (Ri
n, G

i
n, B

i
n)

is the color of pixel n (or, more realistically, the median of
paint patch n) under illumination i in the RGB color space;
N and I are the whole set of pixel indexes and illumina-
tion indexes, respectively. For example, if use the Macbeth
ColorChecker target, with 24 patches, then if we image the
target under 10 different illumination conditions, |N| is 24
and |I| is 10.

We plot curves for patch n under the whole set of illu-
minants I. For each patch, we first shift the set of log–log
ratio vectors such that the center of the cluster correspond-
ing to one patch under different illuminations is located at
the origin of the coordinate system. The centrally aligned
log–log ratio set is denoted {(r̂ i

n, b̂
i
n)|n ∈ N, i ∈ I}, where

r̂ i
n = ri

n − 1

|I|
∑
i∈I

ri
n, b̂i

n = bi
n − 1

|I|
∑
i∈I

bi
n. (4)
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From now on we assume shifted log–log values, and
for conciseness we denote the set by {(r, b)}. The cross-
correlation matrix C of the center-shifted log–log ratio pair
set equals

C =
[

err erb

ebr ebb

]
, (5)

where err =E[r2], ebb =E[b2], erb =ebr =E[rb], with E[·]
being expectation value. Let �1 and �2 be eigenvalues of C;
these are as follows:

�1 = 1

2
err + 1

2
ebb + 1

2

√
(e2

rr − 2errebb + e2
bb + 4e2

rb),

�2 = 1

2
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2
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2

√
(e2

rr − 2errebb + e2
bb + 4e2

rb).

Then the eigenvector v1 corresponding to �1 is defined as
the principal orientation of the camera:
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⎛
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The invariant image is calculated as the gray-scale image
projected into the direction v⊥ orthogonal to the character-
istic direction:

Iinv = (log[R/G], log[B/G])
‖v⊥‖ v⊥. (6)

3. An inertia snake model

The traditional 2D snake is a deformable curve X(s) =
[x(s), y(s)], where s is a parameter in the range [0, 1]. The
contour is determined by an energy minimization problem.
Contour X is that which minimizes the system energy E,
defined as

E(X) =
∫ 1

0

�

2
‖∇X(s)‖2 + �

2
‖∇2X(s)‖2 + P(X(s)) ds,

(7)

where � and � are parameters to control the internal ten-
sion (stretching) and stiffness (bending) of the contour, re-
spectively; ∇X(s) = (dx(s)/ds, dy(s)/ds) and ∇2X(s) =
(dx2(s)/ds2, dy2(s)/ds2); ‖(x, y)‖=√x2 + y2; and P(X)

is an external energy term which is minimized at the fea-
ture of interest. Based on the calculus of variations, the
Euler–Lagrange equation corresponding to the variational
problem is

−�Xss + �Xssss + ∇P(X) = 0. (8)

The Euler–Lagrange equation can be solved by the steepest
descent method. By introducing an artificial time t, we set

�X(s, t)

�t
= �Xss − �Xssss − ∇P(X). (9)

The introduction of the time t makes X(s, t) an evolving con-
tour, also called an active contour. The first two terms in the
equation are usually called internal forces since these forces
on the snake are due to a self-shape constraint. The third term
is called the external force, and is caused by the external fea-
tures of interest in the image. The external force will attract
the snake to converge to a shape near the feature of interest,
e.g. edges, while the internal force makes the snake behave
like a spline such that it will not spread out and also has
some stiffness such that it is not easy to bend. The stiffness
term is important for fitting a boundary with holes. But the
stiffness also prevents the snake from converging into some
concave parts of the boundary of the object. Different snake
models are usually distinguished by the scheme used for
different external forces [16], and schemes which make the
snake able to follow concavities in the object boundary [17].

3.1. Snake equation with predictive contour inertia and
chordal string shape descriptor constraint

3.1.1. Predictive contour constraint
In this section, we present the first component of our new

model for enhancing the robustness of active contours [18]
in the tracking problem. We include a new inertial term in
an active contour minimization problem, and then in Section
3.1.2 go on to include an overall shape constraint, based on
chords across the object boundary curve. We formulate a
new snake minimization problem with an inertial constraint
as follows:

min
X(s)

∫ 1

0

�

2
‖∇X(s)‖2 + �

2
‖∇2X(s)‖2

+ P(X(s)) + �

2
E(X(s), C(s)) ds, (10)

where X(s)=[x(s), y(s)] is the active contour of the current
frame, and C(s) = [c1(s), c2(s)] is the prediction contour
from the previous frame. E(X(s), C(s)) is a term which
measures the difference between X(s) and C(s) [19]. Just
as in a traditional snake, the internal energy of the active
contour is handled by the first two terms, with weights �
and �. The term P(X(s)) is the external force, based on a
feature of interest such as edge information; here we shall
use object motion, instead, as the driving feature.

One natural choice for E(X(s), C(s)) is the distance

E(X(s), C(s)) = ‖X(s) − C(s)‖2. (11)

If the norm chosen is the Euclidean norm ‖(x, y)‖ =√
x2 + y2, the corresponding Euler–Lagrange equation is

−�Xss + �Xssss + ∇P(X) − �(C − X) = 0 (12)
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Fig. 1. Chordal distance. Chord d(s, 	) is a function of position and shift.

and by introducing an artificial parameter t into X, the steep-
est descent solution is

�X

�t
= �Xss − �Xssss − ∇P(X) + �(C − X). (13)

We generalize the above equation by substituting a general
force term Fext (X) in place of the potential term, −∇P(X),
leading to the final equation

�X

�t
= �Xss − �Xssss + Fext (X) + �(C − X). (14)

This yields a modified active contour for the tracking prob-
lem, with a new force term based on the prediction contour.
Weight � controls the influence the prediction has on contour
tracking.

3.1.2. Chordal string shape descriptor constraint
In this section we further constrain the shape compact-

ness of the snake and its shape persistence from frame to
frame, by the use of a new chordal string shape descriptor
constraint. To do so, we iterate through a contour evolution
that tries to maintain a chordal string descriptor.

In practical situations, the contour of an object does not
change arbitrarily: the shape of the contour usually displays
some degree of rigidity. As we have seen, traditional snakes
control the rigidity of the snake using two terms, the stiff-
ness and the smoothness, by means of terms in the gradi-
ent and the Laplacian of the contour. Since the gradient and
Laplacian are local operators, the global shape of the snake
is thus usually not controlled effectively. Here, we propose

a scheme based on constraining the shape of the contour by
means of a new set of shape descriptors based on chordal
strings. We first present a new shape descriptor and then
present a new intra-/inter-frame constraint snake equation.

Chordal string shape descriptor. Let us define a new shape
descriptor by considering the following observations. Firstly,
a closed contour X(s) is defined as a periodic function in
this context, with s the normalized arc length along the con-
tour starting from some arbitrarily selected origin. Then the
following function:

d(s, 	) = ‖X(s) − X(s + 	)‖ (15)

is also periodic, with respect to both s and 	, with a period
of unity. This chordal distance d(s, 	) is a natural choice for
characterizing the shape of a closed contour. The chordal
distance d(s, 	) for a particular s and 	 is shown in Fig. 1(a).

Then the difference of two contours X andY can be defined
as the sum of the square differences in chordal distances,
over all shifts 	, along each complete curve:

D(X, Y ) = min

∈(0,1)

∫ 1

0

∫ 1

0
(dX(s, 	)

− dY (s + 
, 	))2 ds d	. (16)

Parameter 
 is a shift necessary because of the arbitrarily
selected origin. This measure is shown in Fig. 1.

Now we have a shape descriptor for general shape com-
parison. In the following scheme, we use a restricted version
of the proposed shape descriptor so as to make the scheme
suitable for fast video processing. In the rest of this section,
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Fig. 2. Chordal string shape descriptor. (a) a fish contour; (b) a fish contour similar to (a); (c) a contour dissimilar to (a); (d) chordal string shape
descriptor for contour (a); (e) chordal string shape descriptor for contour (b); (f) chordal string shape descriptor for contour (c); and (g) simplified chordal
shape descriptor with 	 = 1/2 for contours (a), (b) and (c).

we fix 	 as 1/2. 
 can also be set to 0 if we know the
corresponding starting point of the contours. To simplify
the notation, we use d(s) to denote d(s, 1/2). The intuitive
concept of d(s) is that it defines the “diameter” of the contour
at different locations. For a circular contour, d(s) is just
a constant function d, the diameter of the circle. Then the
difference of contour X and Y can be represented as

D(X, Y ) =
∫ 1

0
(dX(s) − dY (s))2 ds. (17)

Fig. 2 illustrates an example of measuring shape with
the proposed shape descriptor. Figs. 2 (a)–(c) show three
shapes; while the contour of (a) and (b) are similar, (a)
and (c) are more different. The proposed shape descriptors,
shown in Figs. 2 (d)–(f) agree with this observation. The
shape differences based on the proposed area-based shape
descriptor (16) are 6.07 for contours (a) and (b), and 17.44
for contours (a) and (c). The simplified line-based shape
descriptors (17) with 	 fixed to be 0.5 are shown as curves in
Fig. 2 (g). For the simplified descriptor, the shape difference
is 7.66 for contours (a) and (b) and 23.53 for contours (a)
and (c).

The snake equation. Suppose we have determined a pre-
dictive contour C(s). Then we have still to find the best
snake solution X(s) in the current frame that takes into ac-
count our inter-frame constraints: i.e., we need a steady-state
solution that yields the best curve path given the current,
intra-frame, information.

Recall that our objective in using the chordal string de-
scriptor as defined above is to maintain the shape of contour
across frame change. We have found that the addition of
such a global shape constraint mechanism substantially in-
creases tracking reliability. Section 3.4 explicates how this
extra constraint operates.

If we specialize to “diameters”, as above, then we claim
that the equation we wish to solve, using curve evolution,
for a correct curve within the current frame is that derived
using the following proposition.

Proposition. The partial differential equation for curve
X(s) that includes diameter chord shape descriptor con-
straints is as follows:

�X

�t
= �Xss − �Xssss + Fext (X) + �(C − X)

+�
(X(s + 1/2)−X(s))(‖X(s)−X(s+1/2)‖−dX−1(s))

‖X(s+1/2)−X(s)‖ + �
,

(18)

where � is a small positive number.

Proof. To prove this result, first let us utilize a fictitious
auxiliary curve Y (s), one that we wish to equal a copy of
X(s), but shifted by half of the contour length: i.e., we wish
to have X(s) = Y (s + 1/2). First, let us start with a curve
Y (s) that is free, but initialized as a curve Y0(s) given by the
diameter-shifted version of the initial curve X0(s) for X(s)

itself: Y0(s) ≡ X0(s + 1/2).

Then a reasonable new snake equation is represented as
the following reaction-diffusion problem:

min
X(s),Y (s)

∫ 1

0

�

2
(‖∇X(s)‖2 + ‖∇Y (s)‖2)

+ �

2
(‖∇2X(s)‖2 + ‖∇2Y (s)‖2) + P(X(s))

+ P(Y (s)) + �

2
{E(X(s), C(s)) + E(Y (s), D(s))} ds

+ �

2

∫ 1

0
G(‖X(s) − Y (s)‖, dX−1(s)) ds,
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where X(s) is the active contour in the current frame; Y (s) is
an auxiliary contour coupled with X(s); and C(s) and D(s)

are the prediction contours for X and Y from the previous
frame. Functions E(·, ·) and G(·, ·) are two energy terms.
Energy E(·, ·) was defined in the last section. The term
G(·, ·) is defined as

G(A(s), B(s)) = ‖A(s) − B(s)‖2

with dX−1(s, 	) our distance function (15) and dX−1(s)

evaluated using the previous frame’s X(s). We will show
that ‖X(s) − Y (s)‖ = dX(s), and therefore

∫ 1
0 G(‖X(s) −

Y (s)‖, dX−1(s)) ds =D(X, X−1) =D(Y, Y−1), where X−1

and Y−1 are the contours of X and Y in the previous frame,
respectively. That is, we wish to maintain the chordal shape
descriptor, as the contour evolves, thus encouraging the
maintenance of a global shape.

In a Euclidean norm, the resulting set of Euler equa-
tions is

− �Xss + �Xssss + ∇P(X) − �(C − X)

− �
(Y (s) − X(s))

‖X(s) − Y (s)‖ (‖X(s) − Y (s)‖ − dX−1(s)) = 0,

− �Yss + �Yssss + ∇P(Y ) − �(D − Y )

− �
(X(s) − Y (s))

‖X(s) − Y (s)‖ (‖X(s) − Y (s)‖ − dX−1(s)) = 0.

As usual, we replace −∇P(X) in the above equations by a
generalized force term Fext (X). Curve evolution is modeled
using a fictitious time variable t, with change in time set
to the left-hand sides above. Thus, the resulting iterative
steepest descent solution is as follows:

�X

�t
= �Xss − �Xssss + Fext (X) + �(C − X)

+ �
(Y − X)

‖X − Y‖ (‖X − Y‖ − dX−1),

�Y

�t
= �Yss − �Yssss + Fext (Y ) + �(D − Y )

+ �
(X − Y )

‖X − Y‖ (‖X − Y‖ − dX−1). (19)

Suppose the initial state of X(s) is X0(s); then let the initial
state of Y (s) be X0(s + 1/2). Similarly, let the initial state
of D be D(s)=C(s +1/2). The shape descriptor dX−1(s) is
that for the previous frame. Note that the solution X(s) is the
tracking contour, while Y (s) is an ancillary contour. We can
now state a observation allowing us to dispense with Y (s).

Observation 1. If the initial values of X and Y obey the
condition X(s, t0) ≡ Y (s + 1/2, t0), then we also have
X(s, t) = Y (s + 1/2, t) for any t > t0.

Proof. We will prove the proposition by induction. Assume,
for any t1 � t , that X(s, t1) = Y (s + 1/2, t1). Then,

X(s, t1 + dt) = [�Xss(s, t1) − �Xssss(s, t1)

+ Fext (X(s, t1)) + �(C(s, t1) − X(s, t1))

+ �
(Y −X)

‖X−Y‖ (‖X−Y‖− d)]dt + X(s, t1)

and

Y (s, t1 + dt) = [�Yss(s, t1) − �Yssss(s, t1)

+ Fext (Y (s, t1)) + �(D(s, t1) − Y (s, t1))

+ �
(X−Y )

‖X−Y‖ (‖X−Y‖ − d)]dt +Y (s, t1).

Making use of the periodic property of X and Y, we have
X(s+1/2, t1)=Y ((s+1/2)+1/2, t1)=Y (s, t1). At a slightly
later time, it is also easy to verify that X(s, t1 + dt) = (s +
1/2, t1 + dt). By induction, the lemma follows. �

Observation 2. The coupled set of Eq. (19) has the same
solution X as the PDE (18).

Proof. Eq. (18) follows from the lemma above, with no con-
stant �. That constant is needed, however, as a regularization
parameter: adding a small positive number � to the denom-
inator prevents overflow if ‖X(s) − Y (s)‖ is near zero. �

This completes the proof of the proposition, and shows
that we can indeed control the shape of the contour according
to the defined shape descriptor. We do not need to solve for
both of X and Y, but instead the coupled set of Eq. (19) can be
simplified into a single PDE. Thus, Eq. (18) is the equation
we utilize in the contour tracking procedure. The numerical
method used for solving the PDE problem is discussed below
in Section 3.5.

The equations together try to maintain the shape of the
contour from frame to frame via our new chordal string
constraint. Weight � controls the degree of shape rigidity.
This modified active contour for the tracking problem also
includes the new inertia force term based on the prediction
contour: weight � controls the degree of influence of the
prediction on contour tracking.

3.2. Contour prediction based on ICM

So far, we have simply assumed that we have available
a predictive contour, derived from the previous frame. Now
let us examine a method for producing such a prediction.
Since we have several constraints to maintain the shape of
the snake, we found that the precision of the predictive con-
tour could be relaxed. In this paper, we use a fast contour
matching method based on ICM [20].

The contour prediction problem can be formulated as the
following energy minimization problem,

min
v

∑
x∈X

e(x, v) +
∑

(x,y)∈N
�(x, y)‖v(x) − v(y)‖2,
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where X is the contour in the current frame; e(x, v) is the
cost of site x having motion v, and defined as the block
matching result in a rectangular searching window; N is the
set of neighbors; �(x, y) is a smoothing coefficient which
decreases as the distance of x and y increases, e.g. �(x, y)=
�0e‖x−y‖/	, where 	 determines the coupling strength of the
sites. It should be noted that N need not be defined as
strictly adjacent sites on the contour: in this paper, N is
defined by the edges of the Delaunay triangulation of the
sites on the contour. Neighbors are nodes on the contour
within this triangulation. For a general topology, the opti-
mization problem is NP-hard. We use the ICM scheme to
get an approximate solution. The initial values of v are set
to the best local block searching result. The typical width of
the block is 5–11. For each site, all possible motions for the
site are tested and the one that most reduces the energy is
accepted. Since there is no guarantee that iteration will con-
verge for ICM, a heuristic large iteration number should be
chosen. In our experiments, we found that 20 iterations suf-
fice. Based on the calculated motion, the predicted contour is

C = X−1 + v. (20)

We modify the initial contour Cinit to be equal to a uni-
form expansion of the previous contour tracking result:

Cinit = X−1 + cn, (21)

where n is the outward-directed normal of Xprev , and c is
a constant. It is clear that this scheme can work for any
motion of the contour with speed less than c ·f in the normal
direction, where f is the video frame rate.

3.3. Global motion compensation and external force
formation

To remove the motion introduced by the camera, called
global motion, we need to estimate the motion in the whole
picture. If the background object is a plane, then the back-
ground image in one frame can be mapped to another frame
by a projective transformation or a homography. Although
the projective transformation is only exact for a plane, it
is often used to approximate the background motion if the
object is distant from the camera. But the projective transfor-
mation is difficult to estimate since the denominator makes
for a nonlinear transformation. In most circumstances, if the
object is far away relative to the focal length of the camera
and the viewing angle is small so that depth does not change
too much, an affine model is a reasonable approximation.
In this case we have a 6-parameter affine model. The affine
flow field can be represented as

�(x, y) = A(x, y)p, (22)

where p={p1, p2, p3, p4, p5, p6}T are the parameters to be
estimated. Here,

A(x, y) =
(

1 x y 0 0 0
0 0 0 1 x y

)
. (23)

The optical flow equation can be written as

∇uT(Ap) + ut = 0. (24)

This is an over-determined problem, in that we have more
equations than the number of unknowns. We can use a least
square error model to get an approximate solution, mini-
mizing an E defined by

E =
∑
x,y

(∇uT(Ap) + ut )
2. (25)

Taking the derivative of E with respect to p and setting the
result to zero, the solution for the affine parameters is

p =
(∑

AT∇u∇uTA
)−1∑

(−AT∇uut ). (26)

In our tracking scheme, we use only the part of the image
outside the contour of the object for global motion estima-
tion. This method is straightforward for our scheme, since
we already extract the moving object region in the image
when tracking. For global motion estimation, it is enough to
downsample the input images and estimate the global mo-
tion parameters at a very coarse level. In the proposed track-
ing scheme, two motion detection maps are generated. The
first one is based on the original video with global motion
compensated. The second is based on the shadow invariant
global motion compensated images. We then use a simple
thresholding scheme to detect the motion feature in both se-
quences. The intersection of both these motion detection re-
sults produces an image segmentation map which is used to
calculate the external force field of the snake model, based
on the gradient vector flow scheme [17].

3.4. Evaluation of chordal constraint

To show that our chordal string constraint does indeed
increase tracking reliability, we test the method with and
without this new constraint.

Consider the U-shaped object in Fig. 3(a). If we take as
initial curve the green line shown in Fig. 3(b),1 then the
version that is expanded in the normal direction according
to the contour initialization method (21) is shown in blue,
expanded outside the figure. We assume that there is an
error of prediction contour occurring near the concave part
of the object. And, we assume the object is static. Now
applying the active contour model Eq. (14), with the contour
prediction inertia term (C − X) but without chordal strings,
yields the thicker, red, curve in Fig. 3(c). This result includes
calculating the external force field of the snake model based
on the gradient vector flow scheme, which is indeed meant to
help in attracting the curve down into such deep concavities.

1 Figures in color are included in http://www.cs.sfu.ca/cs/∼mark/
ftp/PR05/

http://www.cs.sfu.ca/cs/~mark/ftp/PR05/
http://www.cs.sfu.ca/cs/~mark/ftp/PR05/
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(a) (b)

(c) (d)

Fig. 3. Illustration of efficacy of chordal constraints. (a) target object;
(b) contour initialization—green; initialization expanded according to
(21)—blue; (c) with inertial constraint: red—solution of curve evolution
(14); and (d) with chordal string constraints as well. The yellow curving
are evolving contours.

We see that even with this help, the active contour scheme
has not completely succeeded.

On the other hand, including chordal string constraints
instead generates the result in Fig. 3(d): now the solution
curve almost coincides with the objective shape.

3.5. Numerical implementation

We use the finite difference method to discretize Eq. (18).
Let

Xn
i = (xn

i , yn
i ) = (x(i�s, n�t), y(i�s, n�t)),

di = d(xn
i , yn

i ). (27)

As usual, we assume that Xn
i is periodic with period of N ,

with N the number of nodes in the discrete contour. Thus,
we have Xn

i = Xn
i mod N . The numerical form for Eq. (14)

is then

Xn+1
i − Xn

i

�t
= �

�s2 [Xn+1
i+1 + Xn+1

i−1 − 2Xn+1
i ]

− �

�s4

{[
Xn+1

i+2 + Xn+1
i − 2Xn+1

i+1

]

− 2
[
Xn+1

i+1 + Xn+1
i−1 − 2Xn+1

i

]

+
[
Xn+1

i + Xn+1
i−2 − 2Xn+1

i−1

]}
+ Fext (X

n
i ) + �(Cn

i − Xn
i )

+ �

(
Xn

i+N/2 − Xn
i

)
‖Xn

i+N/2 − Xn
i ‖ + �

× (‖Xn
i+N/2 − Xn

i ‖ − di). (28)

Let xn=[xn
0 , xn

1 , . . . , xn
N−1]T, yn=[yn

0 , yn
1 , . . . , yn

N−1]T and
Xn = [xn, yn], Yn = [Xn

i+N/2] and T n = [‖Xn
i+N/2 − Xn

i ‖].
In matrix form, we have,

Xn+1 − Xn = AXn+1 + �tFext (X
n) + �t�(Cn − Xn)

+ ��t
(Y n − Xn)

T n + �
(T n − di). (29)

Solving for Xn+1,

Xn+1 = (I − A)−1[Xn + �tFext (X
n) + �t�(Cn − Xn)

+ ��t
(Y n − Xn)

T n + �
(T n − di)], (30)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2��t

�s2 − 6��t

�s4

��t

�s2 + 4��t

�s4 −�t�

�s4 −��t

�s4

��t

�s2 + 4��t

�s4

��t

�s2 + 4��t

�s4 −2��t

�s2 − 6��t

�s4

��t

�s2 + 4��t

�s4 −�t�

�s4 −��t

�s4

. . .

��t

�s2 + 4��t

�s4 −�t�

�s4 −��t

�s4

��t

�s2 + 4��t

�s4 −2��t

�s2 − 6��t

�s4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The parameters such as the ��t/�s2, ��t/�s4, �t�, �t and
� should be determined differently for specific applications.
In our numerical scheme the typical values for ��t/�s2,
��t/�s4, �t�, �t and �t� are 0.4, 0.4, 0.15, 0.6 and 0.5.

4. Shadow resistant tracking system

In this section we present the overall system for our track-
ing scheme. The system diagram is shown in Fig. 4.

The system is based on an incremental scheme. Two con-
secutive frames are used in the global motion estimation,
motion detection, and contour prediction steps. The scheme
can also be easily extended to the three-frame or multi-
frame model. The shadow resistant tracking algorithm is as
follows:
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Fig. 4. System diagram.

Algorithm 1.

1. Fetch frame i, denoted by F(i); previous frame is F(i − 1).
2. Calculate the affine transformation from F(i − 1) to F(i), denoted as H, based on Eq. (26).
3. Calculate the first motion map, map1 = |F(i) − Warp(F (i − 1), H)| > threshold1.
4. Calculate the second motion map:

map2 = |Invariant(F (i)) − Invariant(Warp(F (i − 1), H))| > threshold2.
5. Combined motion map is: map = intersection(map1, map2).
6. Generate Fext = GVF(map).
7. Contour prediction based on ICM and initiate contour generation (21).
8. Calculate d(s) from F(i − 1).
9. If F(i) is the first frame, manually draw the contour of the object.

snake equation is �Xss − �Xssss + Fext (X) = 0.
Else the snake evolves according to Eq. (18).

10. If the procedure does not finish go to 1, else exit.

Values threshold1 and threshold2 should be determined
by experiment. Typical values are 20/255 and 50/255 for
normalized gray-scale images.

5. Experimental results

First, we applied the proposed tracking method to video
sequences with little shadow interference. Both moving and
fixed camera situations are tested. In these experiments, only
the source color video is used to estimate object motions,
and not the shadow-invariant version. Figs. 5–8 show the
tracking results based on the proposed scheme.

For shadow resistant object tracking, we used a consumer
camcorder (Canon ES60) in our experiments—the method
is robust against gamma correction and can be used in gen-
eral environments. Before the tracking experiments, we first
calibrated the camcorder to obtain the shadow invariant ori-
entation. We used a Macbeth ColorChecker color target with
24 color patches, imaged under three illuminations, for the
camera calibration. The images for the calibration are shown
in Fig. 5.

The illuminants used were a standard daylight and two dif-
ferent indoor lights. (Alternatively, one could simply capture
images as the daylight phase changes, outdoors.) During the
video capture process, both the camera and the target were

fixed such that we could retain the pixel correspondence
under different illuminations. The analog video was then
digitized. We manually segmented the images into regions
corresponding to different color blocks. The color in each re-
gion was represented by the mean R, G, and B value. Fig. 9
shows that a scatter plot of the center-shifted log–log ratio
data gives the illumination invariant orientation of the cam-
corder. The orientation vector measured was [0.37, −0.93].
The center-shifted log–log ratios corresponding to each ma-
terial are fit fairly well by a straight-line, with some outliers.
Errors are caused by several factors. One is the model error.
Since the straight line model is exact only for ideal pulse

sensor cameras, the actual wide-band sensors will cause dis-
persion of the log–log ratios. Other errors come from the
measuring limitations posed by the camera’s dynamic range
and digitizer quantization. As shown in the following ex-
periments, the estimated orientation is nevertheless robust
enough to greatly improve the tracking result.

Fig. 5. The color target used for camera calibration. (color images may
be viewed at www.cs.sfu.ca/∼mark/ftp/PR05/shadowlesstracking05.pdf).
(a) Illumination 1; (b) Illumination 2; and (c) Illumination 3.

http://www.cs.sfu.ca/~mark/ftp/PR05/shadowlesstracking05.pdf
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Fig. 6. Selected frames from tracking result for the Claire sequence.

Fig. 7. Selected frames from tracking result for the Foreman sequence.

Fig. 8. Selected frames from tracking result for the Lab sequence. Selected frames from a 470 frame sequence.

Fig. 9. Camera calibration to find characteristic orientation.

Fig. 10 shows the motion detection result for a two-color
ball rolling on the ground, based on the original image se-
quence and the illumination invariant sequence. The tradi-
tional motion detection scheme makes large errors on both
the object’s boundary and the shadow boundary. Motion de-
tection based on the shadow-invariant image obtains much
better results. The shadow’s influence is almost completely
removed. We also note that the background of the shadow-
invariant image motion detection result is also much clearer.
To increase the robustness we use the intersection of the mo-
tion detection map of the original image sequence and that
for the shadow-invariant image sequence as the final motion
detection map.
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Fig. 10. Motion detection map: (a, b) two consecutive frames; (c) warped shadow-invariant image for frame (a); (d) shadow-invariant image for frame
(b); (e) motion map by shadow-invariant image overlapped with frame (b); and (f) motion map by original gray-scale images overlapped with frame (b).

Fig. 11. Ten-frame test sequence and corresponding motion map. Note that the motion features are missing in this example.

Fig. 12. Tracking result with traditional snake for the ten-frame test sequence.
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Fig. 13. Tracking result only with the predictive contour inter-frame constraint term for the test sequence.

Fig. 14. Tracking result with both the predictive contour inter-frame constraint and chordal shape descriptor inter-frame constraint for the test sequence.

Fig. 15. Tracking result with proposed method for the ball sequence. Selected frames from the 40-frame sequence.
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Fig. 16. Motion map: (a, b) two consecutive frames; (c) motion map by original gray-scale images; and (d) motion map by shadow-invariant images.

Fig. 17. Tracking result with proposed method for the car sequence, selected from a 100-frame sequence.

The inertia terms are found to be very important for the
robustness of the snake. Fig. 11 shows a ten-frame test
sequence. In this experiment, a slightly higher threshold
is applied in the motion detection process, which results
in features missing in the motion map. The motion map
shows that from frame 5, motion features are missing
in several successive frames. For the test sequence, we
first set both inertia term I and inertia term II to zero. In
this form, the method corresponds to the simple method

of initializing the snake by motion prediction. Fig. 12
shows the tracking result—the snake collapses because of
the missing motion features. We then set only the shape
descriptor constraint term to zero and repeat the experi-
ment with the predictive contour constraint—the predic-
tive contour constraint itself cannot give a robust result.
The contour loses tracking at the end of the sequence,
as shown in Fig. 13. One reason for the collapsing of
the contour is that it is difficult to predict the contour
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Fig. 18. Tracking result with proposed method for the traffic sequence, selected from a 100-frame sequence.

because of the rotation of the ball. The tracking result
with both the inertia constraints for the testing video
sequence is shown in Fig. 14. The inertia terms constrain
the shape continuity between frames and effectively pre-
vent the snake collapsing even in the case of missing
features. Fig. 15 shows the tracking result for another
longer rolling ball sequence (the video sequence has 40
frames). The result shows that the contour of the ball is
well tracked without being distracted by the shadow. The
contour well follows the object’s contour although the scale
changes.

In Fig. 16, motion is indeed present throughout, but the
strong shadowing confounds a traditional tracking scheme.
The shadow-removal algorithm greatly attenuates this prob-
lem, as can be seen in Fig. 16(d). In the final tracking result
for this sequence, shadows do not present a problem. Figs. 17
and 18 show outdoor traffic scene tracking results. Fig. 19
shows a result for tracking a toy mouse’s face in the pres-
ence of cast shadows under sunlight. Generally, while model
approximation and measurement errors do affect shadow
removal, shadows are usually greatly attenuated even this

happens. Furthermore, since we use a robust snake model,
these factors do not cause large problems in real applications.

6. Conclusion

We present an efficient algorithm for tracking objects
that is resistant to shadows. The algorithm eliminates the
distracting influence from shadows and tracks the shape of
the actual object. Shadow removal is based on a prelimi-
nary, simple, camera calibration. Shadow resistant tracking
can be very useful for higher level vision processing such
as gesture or behavior recognition. Inertia terms we in-
troduce into the variational problem tend to preserve the
object boundary shape between frames, and prevent contour
collapse, with a new chordal constraint encouraging global
shape preservation. The method is quite robust to moving
background objects and still performs well when global
motion compensation fails due to fast camera motion. This
is due to the fact that the method uses color image match-
ing in the contour prediction part, and this step will likely
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Fig. 19. Selected frames from tracking result for the 300-frame mouse sequence.

compensate for such errors. Even when global motion com-
pensation fails, we have found that the proposed snake
method still works regardless of increased background clut-
ter in the motion map. The mouse sequence also points up
a strength in the method: Since the chordal constraint is not
a hard constraint, it works well even if the object deforms.
In this sequence, the object’s contour changes a lot in the

sequence. The proposed method still works well for these
situations. Standard tracking methods such as CONDEN-
SATION [21] needs intensive training to be successful.
Another merit of the proposed method is that it does not
need a training phase. For highly deformable objects, train-
ing could be useful. But there is always a trade-off between
flexible constraints and robustness.
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