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ABSTRACT 

A new color correction method is introduced which 
predicts how changing the color of the scene illuminant 
will affect a camera’s RGB response. Like diagonal 
transformation color correction methods. the new method 
requires only 3-parameters. It therefore requires only the 
RGB color of the two illuminants be known. The method 
models the 9-parameters of a 3-by-3 linear transformation 
using a 3dimensional linear model composed of 3 basis 
transformations. Experiments show that the method 
works better than the standard diagonal model unless the 
camera sensors are very sharply peaked, in which case the 
perfonnance is essentially unchanged. 

1.lNTRODUCTlON 

A color image taken under an illuminant that differs in 
spectral composition and color from the illununant for 
which a digital still camera is designed may have an 
objectionable color cast. Generally. the task of color 
balancing the image 10 eliminate the color cast can be 
subdivided into stages: (a) estimating the scene 
illumination, and @) correcting the image colors based on 
the estimated illuminant. In this paper we address the 
latter, colorcorrection stage. 

We present a new 3-parameter method of color 
correcting digital still ciunera images in order to 
compensate for the changes in image white point caused 
by changes in the illumination. This method is an 
extension of our previous work [GI on modeling the 
human chromatic adaptation transform. 

One standard way to adjust the white point is to 
apply a diagonal transformation to the camera RGB, 
which applies an independent scaling to each of the R, G 
and B signals separately. It is often referred to as the von 
Kries method (71 since von Kries proposed independent 
scaling of the cone signals as a model of human 
chromatic adaptation. 

In some cases the diagonal model can be improved 
by introducing a sensor sharpening transfonn IS] prior to 
the diagonal transformation. A sharpening transform is 
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tuned to a particular illuminant pair and is not guaranteed 
to improve the results in all cases [2]. 

Another alternative is to use a full 9-parameter 3-by- 
3 linear transformation mapping RGB under one 
illuminant to the RGB under a second. The problem with 
this method is that usually there is insufficient 
information available to determine the 9 matrix entries. 
Typically all that is known are the RGB values of a 
‘white’ surface under the hvo illuminants. Such 
measurements provide only 3 equations for the 9 
unknowns. Of course, for the case of a diagonal 
transform this suffices since there are only 3 unknowns, 
which are deterimned by the ratios of the signals from the 
white under the two illuminants for each of the color 
channels taken separately. 

Following on our results for the chromatic adaptation 
transforms (61, we consider here whether or not there is 
some other nondiagonal 3-parameter model that we 
could use that would perform better than the diagonal 
model for color correction of digital imnagecy. We form a 
new model by considering the 9dimensional space of 
3x3 transformations that model illuminant change and 
then finding the 3dimensional subspace that best 
approximates the space of transformations. This subspace 
provides a 3-parameter, non-diagonal model of illuminant 
change that works better than other models of illuminant 
change. 

There are WO main differences behveen the cases of 
chromatic adaptation and color correction. The fint is thc 
difference in sensor sensitivities. The second is that 
digital imagery usually is represented in a non - I’ inear 
fashion relative to the original scene luminance--a 
‘gamma’ function (lo] is applied to the linear data. 
Hence, it would be advantageous for the color correction 
transformation to apply directly to the non-linear 
representation. 

There is a some similarity between the use of PCA in 
color correction and its use in color eigenflows [91; 
however, color eigenflows are based on applying PCA to 
vector fields of RGB differences. while here it is applied 
to (ransfonnation matrices. 
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2. PCA BASED COLOR CORRECTlON 

To succeed in color correction we need to estimate the 
RGB of a surface under different illuminations. In this 
process. we assume matte surfaces and ignore changes 
due to shading since by a change of illumination we mean 
only a change in the spectral composition of the 
illuminatioq not a change in the illuminant's position. 

The RGB at single point on the surface as detennined 
by the incoming spectrum of the illumination and the 
surface reflectance is Illen 

h, = fE(A)S(A)R, (A)&?, 
A 

wliereE(/Z)is the spectrum of the illumination, s(A) is 
the percent surface spectral reflectance function, R, (1 ) ,  
i=l. 2. 3 are the camera sensitivity functions which we 
assume are normalized to unity. 

If the image is nonlinear. we assume the nonlinearity 
is of the form 

h' = h' with a typical value of y g 2. 

The linear model of the change in RGB induced by a 
change fmm illuminant a to illuminant b is hb = Mha 
where M is 3-by-3. M i s  independent of the surface 
reflectance. For the nonlinear case. the form renlains lhe 
same although M will be different. 

If we write the elements of the 3-by-3 M out as a 
vector. the space of such matrices is 9 dimensional. 
However, what is the underlying dimensionality of 
matrices M ?  Might the 9-dimensional space be 
embedded in a subspace of dimension as low as three? 
Since we know that color correction based on diagonal 
matrix works quite well, it seem reasonable to expect the 
dimensionality of M lo be much lower than 9. Rather 
than force the 3 parameters to be those of a diagonal 
matrix, we use principal component analysis to extract the 
optimal 3-parameters. 

To determine the dimensionality of the space of 
matrices M .  we first ConstruCt a large set of 
corresponding RGBs under different pairs of illuminants. 
These pairs are formed from the 140 illuminants in the 
Sinion Fmser University database [I]. All the illutninants 
were normalized to unit energy. For each illuminant pair, 
the corresponding RGBs for 1995 surface reflectances 
from the Kodak reflectance and Krinov databases [I, 8, 
111 are calculated. The best, in the least-squares sense, 3- 
by-3 illumination transformation matrix, M , mapping 
one set to the other is then detennined. For n illuminant 
pairs. we obtain n new such matrices M . 

We apply principal components analysis to the set of 
matrices M . To do so, we first write each M as a vector 
m by scanning it row by row. Arranging all such 9- 

elemcnt vectors as rows in a matrix results in an n-by-9 
matrix S. Principal components analysis of S produces 
basis vectors v i ,  i = 1: . . .  9 .  Let the mean m vector be 
m,. These vectors can be reshaped back into 
corresponding 3x3 matrices v. and MO. An illurnination 
transfomation matrix M can then be represented as 

M = z a , y + M , ,  
9 

,=I 

where a, = (in - m,) . v8 . 
We can also approximate M by truncating the 

suinmation and using fewer than 9 basis matrices v. 
Figure 1 shows the residual error in approximating all 
matrices M as the number of basis matrices is increased. 

i 

Figure 1. Residual variance versus dimension 

More than 99% of the total variance is accounted for 
in the first 3 dimensions. The rcmaining issue is how to 
use this model for color correction. Based on principal 
comuponent analysis, we have the first tlme bases 
matrices 7 ~ V2 and V, . We approximate M : 

M ir c,V, + c2V2 + c,V, +MO 

Then given the RGB 3-vectors, lo and Ib of white under 

the two illuminants. the coefficients c, required to predict 
RGBs under illumination b from RGBs from 
Corresponding locations under illumination a can be 
detennined as follows. Since I ,  = /&I , we have 

1, -~&=q~&+cJv,+4r:  
=~[ l ,c;o), l , r : (2) ,1"~~)1+~t/~~~)~~,~(2)~/~~(3)1+ 

= I % G > a J  
aw), 1,4(2): ~ 3 ) 1  
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with 

I i IY,(l) / Y 3 ( 2 ) '  /"V3(3) 

/ Y I ( I )  /,v1(2) l,v,(3) 
Q = /,,v*(I) [,vz(2) r0v2(3) 

y ( j )  denotes column j o f  matrix 5. Letting 

c = [c,. c 2 ,  c,]' ,then 
c = (la - /,&f0)Q-' 

To color correct an image, we simply calculate the 
coefficient vectorc and use it to consmct hf. A t  is then 
applied to the RGB of each image in the input image. 

Color correcting images that are nonlinear due to 
gamma is no different from the linear case except that the 
PCA must be applied to RGB data synthesized to include 
gamma We can expect the PCA method to work since 
previous research [4] showed thal color correction using a 
diagonal transformation on non-linear images bad only a 
slightly higher error than diagonal color correction of 
linearized images. 

3. EXPENMENTAL RESULTS 

To test the proposed color correction method, we measure 
the error in predicting RGB under illuminant change in 
tenns of relative error and CIE L*a*b* AE. The results 
are tabulated in Table 1. The tests are based on the 
spectral sensitivity functions of the Kodak DCS 420, 
Kodak DCS 460 and SOW DXC 930 cameras. 

Table I shows that the new PCA-based method 
reduces the ClE L'a'b' AE error in all cases. The 
improvement is greater for the Kodak cameras than the 
SONY camera. The reason for this is that the SONY 
sensors have very narrow and sharply peaked sensitivity 
functions; whereas, the Kodak sensors are much broader. 
The sensors are compared in Figure 2. Narrow sensors 
make the diagonal model work very well. In the limit, a 
sensor with a Dirac delta sensitivity would lead to the 
diagonal model working perfectly, in which case the PCA 
method could not yield any improvement. However. 
there are many tmdeoffs in sensor design. For example, 
MTTOW sensors let in less light. The PCA method could 
allow broader sensors without creating color correction 
problems. 

Table 1: Average percentage error in R, G_ B estimates 
and average CIE L*a*b* AE for each combination of 
method (simple diagonal, new PCA method), camera 
type, and linear versus nonlinear (gamma corrected) data. 
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Figure 2. The sensor sensitivities of the SONY DXC 930 
camera (dash lines) and the Kodak DCS 160. In 
comparison to the Kodak cuwes, the SONY cutves form 
narrower peaks and have only 1 peak per channel. 

4. CONCLUSION 

We have shown that color correction can be improved by 
modeling the 9-parameters of a full linear 3-by-3 
transformation by a 3-dimensional linear model. Once 
the basis matrices have been determined, the additional 
computational cost of the new model is small. The 
method works on both linear and nonlinear image data. 
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