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ABSTRACT 

In this paper, we present a modified snake model for the 
problem of general video object tracking. We introduce a 
new external force into the snake equation based on the 
predictive contour such that the active contour is attracted 
to a shape similar to the one in the previous video frame.
New methods of contour prediction and contour 
smoothing are presented. The proposed methods can deal 
with the problem of an object’s stopping movement 
temporarily and can also avoid the problem of the snake 
tracking into the object interior. Global affine motion 
estimation is applied to eliminate the effect of camera 
motion and hence the method can be applied in a general 
video environment. Experimental results show that the 
proposed method exhibits increased robustness over a 
traditional snake algorithm and works well for general 
video object tracking.  

2. INTRODUCTION 

The snake model [1] forms a general scheme for 
deformable object tracking. However, in practical video 
environments a traditional snake is found to be easily 
confused by complex backgrounds. One scheme to 
enhance the robustness of snakes is to predict the initial 
contour of the future frame based on motion information. 
If the contour prediction is accurate enough, the initial 
contour is adjacent to the true boundary of the object so 
that the snake can successfully track the object. 
Unfortunately, problems occur when the object stops 
moving and then moves on. For motion-based tracking, 
the snake will eventually collapse into one point, using 
the usual contour initialization scheme. Problems also 
occur when the features of interest exist not only at the 
boundary of the object but also inside the object. A 
prediction error often causes the snake to become trapped 
inside the object. This kind of error cannot be self-
corrected and causes the failure of the tracking system. 
Therefore, using only contour prediction to re-initialize 
the snake cannot guarantee robustness of the tracking 
system. In [2], an affine motion constraint snake is put 
forward for increasing robustness, with object 
deformation restricted to an affine model. A similar 

scheme is presented by Blake [3]. Other schemes try to 
include dynamic information for the object. In [4], the 
incremental contour estimation is fit into a Bayesian 
estimation framework. Based on the probability 
representation, Kalman filtering can be incorporated into 
the snake tracking system. But the Gaussian assumption 
of a Kalman snake cannot be maintained in highly 
cluttered environments. Blake [5,6] proposed a 
CONDENSATION (conditional probability propagation) 
method to solve this problem. As for a Kalman snake, 
this method needs to learn the dynamics of the object, 
based on training sets, before tracking can be applied.  
      We propose a different snake model for tracking a 
single motion object in a general video environment that 
does perform robustly in these problem cases. In our 
model, another energy term is included, based on the 
predictive contour. This term attracts the active contour 
to converge to a shape similar to the one in the previous 
video frame. As well, instead of simply using the 
predictive contour to re-initialize the snake, we construct 
new initial contour by a uniform expansion along the 
normal of the previous contour. This scheme prevents the 
contour from erroneously tracking the features inside the 
true boundary of the object. At the same time, the new 
predictive contour inertia energy term makes the snake 
ignore distracting elements. As well, if the object stops 
moving temporarily, the snake will evolve according to 
the inertia term in the predictive contour and converge to 
a shape that corresponds to the motion prediction result. 
We adopt an affine motion model for global motion 
estimation and camera motion compensation with the 
result that our scheme can work in a general video 
environment. The contribution of the proposed method is 
that it presents a generation model without limiting the 
object’s deformation or dynamics pattern so that it can fit 
general video tracking problems. A learning phase is also 
not needed in the proposed scheme. 
      The paper is arranged as follows. In §3, we present 
the modified snake method for general video tracking, 
with the modified snake equation presented in §3.1. We 
discuss contour prediction and smoothing in §3.2, and in 
§3.3 set out affine global motion estimation and snake 
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external force generation. Experimental results are given 
in §4 and conclusions in §5. 

3. MODIFIED SNAKE  

3. 1   Snake Equation with Predictive Contour Inertia 
In this section, we present an equation for enhancing the 
robustness of active contours in the tracking problem. We 
formulate a new snake equation: 
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where 2:)( RRsX → , ]1,0[∈s , is the active contour for 

the current frame, 2:)( RRsC →  is the predictive contour 

from the previous frame, E(X(s),C(s)) is a new predictive 
contour inertia energy term which measures the 
difference between X(s) and C(s). As for a traditional 
snake, the internal energy and smoothness of the active 
contour is represented by the first two terms, expressing 
tension and rigidity. P(X(s)) is the external energy based 
on the features of interest such as edges or object motion.   
For the new prediction-correction term E(X(s),C(s)) we 
posit the function 
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in order to restrict the snake from changing too much 
from frame to frame. 
       With Eq.(2), the variational derivative of Eq.(1) 
yields an Euler-Lagrange equation 
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      The steepest descent solution of  (3) is generated by 
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The generalization of the above equation derives from 
substituting F(X) for )(XP∇ , yielding the generalized 

modified snake equation 
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     We employ finite differences to discretize Eq.(5): let 
n

iX denote the ith point in the active contour at discrete 

artificial relaxation time n,
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where s∆  and t∆ are distance intervals for the active 
contour and time, respectively. Then Eq.(5) becomes 
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     In matrix form, Eq.(7) reads 
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coefficient matrix. The parameters 2/ st ∆∆ α , 4/ st ∆∆ β ,

t∆λ and t∆  are to be determined. If F(x) is normalized to 
[0,1], typical parameters settings are 0.4, 0.4, 0.25 and 
0.6, respectively.   

3.2 Contour Prediction and Smoothing 
We predict the future contour position and shape by the 
method of block-wise motion estimation followed by a 
smoothing process. For every point (x,y) in the contour, a 
block size of d is constructed centered on the pixel. By 
block matching in a searching window of size w, the best 
matching block center is selected as the estimated 
position of the predictive contour.  
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where X(s) is the current contour and C(s) is the 
predictive contour, ]2/,2/[]2/,2/[ wwwwW −×−= . Motion 

estimation sometimes fails to estimate the correct contour 
position: this occurs if some part of the previous contour 
does not fall on the boundary of an object. This situation 
is very common for snake tracking of objects with 
concave boundaries. To eliminate the error prediction 
points, a global affine motion model can be used. This 
approach can be viewed as a smoothing process for the 
motion estimation result. We propose a different 
approach for smoothing the prediction contour. The 
smoothing process is a self-evolving curve without the 
external force, 
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A stopping condition (fixed number of iterations) has 
to be specified so that the curve will not distort too much 
while smoothing the singular points. The parameters of 

0α and 
0β are determined by experiment—

0α should be 

smaller than
0β to prevent over-shrinking the curve. The 

second-order term 0β acts as a Gaussian filter to smooth 

the contour. 

Figure 1. Scheme of modified snake. (a): blue- previous 
contour; red- initial contour; green- predictive contour. (b): 
new contour.

 Contour of  Frame n Contour of Frame n+1

Initial Contour Predictive Contour 
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Before the search, the contour is initialized as a uniform 
expansion of the previous frame active contour:  

ncXX i &+=     (11) 
where n

&

 is the exterior normal vector of the contour, and 
c is a constant. In our scheme c = 10.   Fig.1 illustrates 
the scheme for construction of predictive contours and 
initial contours.  

3.3 Global Motion Estimation and External Force 
Generation 
In the modified snake-tracking scheme, we use motion as 
the object feature. We extract the moving object from the 
scene and track it along video frames. To remove camera 
motion, we estimate global motion in the whole picture. 
The affine motion equation is 
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where p
& is the affine motion vector and B is the affine 

motion matrix. The Least Squares solution [7] of the 
Eq.(12) is 
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     We calculate global motion based only on the region 
outside of the motion object. The object region is defined 
as the region inside the initial contour. The object region 
is not included during global motion estimation. We 
estimate global motion in a low resolution version of the 
image and scale the transition values. Based on the 
estimated affine model, video frames are warped and 
frame differences are calculated. We then use a simple 
thresholding scheme to detect the motion object (More 
complex models including optical flow could be 
incorporated into the algorithm.) Motion detection 
produces an image segmentation map: Fig.2(c) shows an 
example. As expected, a thresholded direct frame 
difference image as in Fig.2(d) fails to detect the moving 
object—global motion compensation is a key step for 
object extraction. Based on the segmentation map, the 
external force field of the snake model is constructed 
based on the Gradient Vector Flow scheme [8]:  the 
external force F=[u,v] is defined via 
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with µ  a weighting coefficient. The steepest descent 

solution is 
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In our numerical implementation,  
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where we assume unit grid size. The discretization of 

xxv and 
yyv follows the same scheme as u.  Fig.2 shows the 

schema of the proposed method. Fig.2(j,k) show that the 
modified snake ignores distracting elements and tracks 
the true object. 

(a)                             (b)                           (c) 

(d)                             (e)                           (f) 

(g)                             (h)                           (i) 

(j)                             (k)                           (l) 
Figure 2. Modified snake tracking. (a) Frame 1. (b) Frame 
2. (c) Motion detection with global motion compensation. 
(d) Motion detection without global motion compensation. 
(e) Initial contour drawn by hand. (f) Snake attracted to 
the object. (g) Tracking result for Frame 1. (h) Initial 
contour and predictive contour. (i) Edge detection of 
motion map for Frame 2. (j) Initial contour. (k) Snake 
converges to the boundary of object. (l) Tracking result for 
Frame 2.   

4.  EXPERIMENTAL RESULTS 
We compared the proposed snake tracking method with 
the usual method of using the predictive contour as the 
initial one in the future tracking frame, using sequence 
Bream. We use a simple change detection algorithm with 
a square 3 by 3 window to extract object features. The 
threshold is set to be 30 for a coarse segmentation of the 
fish. Motion pixels are those with consecutive frame 
differences after global affine motion compensation above 
the given threshold. The contour for the first frame is 
drawn by hand near the boundary of the object. Contour 
prediction is based on full-search block matching motion 
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estimation, with block size 7 by 7 and search range [-5,5] 
by [-5,5].  
       Fig.3 shows the result for the traditional algorithm 
which uses the predictive contour to initialize snake 
tracking. The starting frame is 122.  In frame 129, an 
error occurs for contour prediction—the contour crosses 
the object; since there is motion detected inside the fish, 
these pixels have an external force pulling the contour 
inside. As shown by experiment, this error cannot correct 
itself. This kind of problem also occurs in frame 156 and 
causes the contour enter the object further. Experimental 
results for the proposed method are shown in Fig.4. The 
starting frame is 1, with a total of 180 frames. Because of 
the new term we introduce to limit contour changes, the 
extra force makes tracking much more robust. Similar 
results for video sequence Foreman are shown in Fig.4. 

(a)                   (b)                  (c)                    (d) 
Figure 3. Tracking result of traditional snake. Starting 
from frame 122. (a) Frame 122.  (b) Frame 129.   (c) 
Frame 130.  (d) Frame 156. 

Figure 4. Modified snake tracking result for Bream. 

Figure 5. Modified snake tracking for Foreman.

(a)                             (b)                           (c) 
Figure 6. Tracking result of modified snake for a panning 
image sequence. (a) Frame 1 (b) Frame 30 (c) Frame 50. 

      In the tracking experiments for Bream and 
Foreman, the object’s motion is sometimes less than the 
threshold specified. Experiments show that the proposed 
method can still track the object for this kind of 
temporary slow motion or still state case.   
     Another experiment was carried out to test the 
proposed method for tracking a walking man with camera 
panning1, with tracking result shown in Fig.10. The 
proposed tracker works well for this type of general video 
as well. 

5. CONCLUSIONS 

In this paper, we present a modified snake model for the 
problem of general video tracking. In the proposed 
scheme, we introduce a new force into the snake equation 
based on the predictive contour. Global affine estimation 
is applied to eliminate the effect of camera motion; 
therefore the system can be applied in a general video 
environment. We also present schemes for contour 
prediction and smoothing. We present a generation model 
without limiting the object’s deformation or dynamics 
pattern and thus it can be applied to general video 
tracking problems. As well, a learning phase is not 
needed in the proposed scheme. In future work, other 
features such as color will be incorporated to further 
increase robustness. The complexity of the proposed 
algorithm is mainly due to the motion estimation and 
external GVF force generation steps. Real-time 
implementation is another future research topic. 

6. REFERENCES
[1] M. Kass, A.Wikin, and D. Terzopaulos, “Snakes: active 
contour models”, Int. J. Comput. Vision, 1:321-331, 1988.  
[2] B. Bascle, P. Bouthemy, R. Deriche and F. Meyer, 
“Tracking complex primitives in an image sequence”, ICPR’94, 
A:426-431.  
[3] A. Blake, R. Curwen and A. Zisserman. “Affine-invariant 
contour tracking with automatic control of spatial-temporal 
scale”. ICCV’93, 66-75. 
[4] D. Terzopoulos and R. Hallinan, “Tracking with Kalman 
snakes”, Active Vision, The MIT Press, 1992, pp.4-20. 
[5] M. Isard and A. Blake, “Contour tracking by stochastic 
propagation of conditional density”, ECCV’96, 1:343--356. 
[6] M. Isard and A. Blake, “CONDENSATION – Conditional 
density propagation for visual tracking”, Int. J. Comp. Vis., 29, 
5-28, 1998. 
[7] D.J. Heeger, “Notes on motion estimation”, Oct. 30, 1996. 
http://white.stanford.edu/~heeger. 
[8] C. Xu and J.L. Prince, “Snake, shapes, and Gradient Vector 
Flow”, IEEE Trans. Image Proc., 7:359-369, 1998.  

1 Video is available in www.sfu.edu/~mark/Icip01
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