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ABSTRACT

In this paper, we present a novel PDE based error conceal-
ment algorithm. We formulate the error concealment prob-
lem as a sequential optimization problem with both smooth-
ing and orientation constraints. By introducing the orienta-
tion constraint we convert a nonlinear variational problem
into a problem that is well posed and which can be solved
without iterative operations. A modified orientation diffu-
sion scheme is presented which is able to reconstruct com-
plex orientation patterns within blocks which have been lost
in an image. In the intensity reconstruction stage which fol-
lows orientation diffusion, optimization is performed based
on the orientation estimates from the first stage together
with the constraint of smoothness on block boundaries. We
present an efficient numerical scheme which implements the
method without iterations.

1. INTRODUCTION

With block-based transform image coding schemes, for ex-
ample JPEG, a one bit error can cause the decoding fail-
ure of a entire image block. Bit errors can also cause loss
of synchronization and thus result in erroneous decoding of
the following image blocks. Error concealment is an impor-
tant technology to compensate for the loss of image blocks
which cannot be well recovered by other error correcting
methods. Various error concealment schemes have been
presented in the literature. The error concealment scheme
presented by Wang et al. [1] formulates the problem as an
optimization problem to find a block matching the bound-
ary that is maximally smooth. Smoothing constraints are
applied to all pairs of samples in the directions of west, east,
north and south. Blurred image blocks occur in higher fre-
quency portions of an image, such as in edge regions. Sun
and Kwok [2] present a POCS (Projections onto Convex
Sets) model that can utilize spatial information more thor-
oughly by interpolation on a large local neighborhood of
surrounding pixels. In the POCS iterative restoration pro-
cess, a directional constraint, instead of only a smoothness

constraint, is applied to the method of projections onto con-
vex sets. They also present a multi-directional interpolation
method [3]. Rabiee et al. [4] propose a multi-directional
recursive nonlinear filtering (MRNF) scheme for spatial in-
terpolation. Any missing block is reconstructed by a recur-
sive process from the boundary to the center of the missing
block. Lee et al. [5] employ fuzzy logic reasoning to re-
cover high frequency information based on the fuzzy rela-
tionships between lost blocks and their neighbors. Zeng [6]
presents a edge adapted error concealment scheme. In [7]
an interpolation model is presented based on the continuity
of level lines. This latter scheme has a lot of correlation with
the proposed model. Li [8] presents a recursive model for
error conealment with directional inference. In this paper,
we focus on error concealment based on a PDE (partial dif-
ferential equation) model. A traditional nonlinear model for
error concealment is formulated as an optimization prob-
lem with a smoothing constraint on block boundaries which
is based on a non-quadratic norm. Such norms have been
shown to be able to conserve edges in image segmentation
and smoothing problems, but this kind of model is often
ill-posed. The problem of ill-posedness is not acceptable
for error concealment since the solution relies strongly on
the initial estimates of lost blocks. An alternate solution
to the nonlinear model recursively estimates the pixels in a
image block layer by layer  from the boundary to the cen-
ter. Since the nonlinear problem is ill-posed, the resulting
reconstructed image depends on the sequence taken by this
recursive process.

In this paper, we present a complete mathematical frame-
work for PDE-based error concealment and its efficient nu-
merical implementation. We formulate the error conceal-
ment problem as a sequential optimization process with both
smoothing and orientation constraints. By introducing the
constraint of orientation we convert a nonlinear variational
problem into a problem that is well-posed and which can
be solved without iterations. We use a more complex and
systematic model than the traditional geometrical model for
estimating the orientation information in lost blocks based
on the orientation diffusion model, which can reconstruct
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complex orientation patterns with more accuracy within lost
blocks. In the subsequent intensity reconstruction stage,
optimization based on the constraint of smoothness on the
boundary is performed; this stage uses the orientation esti-
mates obtained in the first stage.

2. ERROR CONCEALMENT BASED ON
SEQUENTIAL PDE

The error concealment problem is solved by a sequential
optimization scheme involving the following two stages.

2.1. Stage 1: Orientation diffusion

In the first stage, optimization is performed to estimate im-
age orientation such that it is maximally smooth in the re-
constructed areas. This problem can be formulated as,

θ̂ = min
θ

(Cθ[θ(x, y)])

with the constraint,

θ(x, y) = θ′(x, y) (x, y) ∈ B

where θ = π
2 + arg[�u(x, y)] is the orientation for pixel

u(x, y); θ′(x, y) is the correctly decoded orientation on lost
block boundaries; Cθ[.] is a non-negative monotonic cost
function; and B is the set of boundary pixels of lost blocks.

The orientation at a pixel is defined as the direction that
is orthogonal to the gradient direction at the pixel. The
scheme of orientation estimation in this paper is inspired by
the orientation diffusion for noisy image data presented by
Perona [9]. We have adapted Perona’s scheme to the prob-
lem of error concealment and have made an adjustment to
it, by adding a weighting w(x, y) in the formulation of the
continuous domain orientation diffusion problem:

θ̂ = min
θ

(
∫

x

∫
y

w(x, y)[1 − cos(| � θ(x, y)|)]dxdy). (1)

With w(x, y) proportional to | � u(x, y)|, weak gradient
pixels are no longer unduly influential in the estimation of
the orientations of neighbouring pixels.

The Euler Equation corresponding to (1) is,

� · [w(x, y) sin(| � θ(x, y)|)
| � θ(x, y)| � θ(x, y)] = 0 (2)

in which (i, j) ∈ Ω. Its discretized version is,∑
(m,n)∈N(i,j)

w(m,n) sin(θ(m,n) − θ(i, j)) = 0 (3)

again with (i, j) ∈ Ω. Expanding (3), we obtain,

θ(i, j) = arctan(

∑
(m,n)∈N(i,j) w(m,n) sin θ(m,n)∑
(m,n)∈N(i,j) w(m,n) cos θ(m,n)

)+2kπ,

for (i, j) ∈ Ω, from which the orientation estimation prob-
lem can be solved as,∑

(m,n)∈N(i,j)[wx(m,n) − wx(i, j)] = 0∑
(m,n)∈N(i,j)[wy(m,n) − wy(i, j)] = 0

tan[θ(i, j)] = wy(i, j)/wx(i, j) (i, j) ∈ Ω
with the constraints,

wx(i, j) = −uy(i, j), wy(i, j) = ux(i, j), (i, j) ∈ B.

2.2. Stage 2: Intensity diffusion

In the second stage, optimization is performed such that the
intensities of the pixels in the reconstructed areas are maxi-
mally smooth in the sense of

û = min
u

(
∫

x

∫
y

ρ(| � u(x, y|)dxdy)

with the constraints,

u(x, y) = u′(x, y) (x, y) ∈ B (4)

θ(x, y) = θ̂(x, y) (x, y) ∈ Ω

where u′(x, y) represents the correctly reconstructed image
pixels at the boundaries of lost blocks; Ω is the pixel set
over which reconstruction is still necessary; and ρ(·) is a
non-negative monotonic function.

With the orientation estimates θ̂(x, y) from Stage 1, the
second constraint may be refined to allow the intensities to
be tagged to the orientations via the gradient direction con-
straint: −uy√

u2
x+u2

y

= cos[θ̂(x, y)] and ux√
u2

x+u2
y

= sin[θ̂(x, y)].

This leads to an equation linking the intensities and the es-
timated orientations:

uxx cos2 θ̂ + uyy sin2 θ̂ − (uxy + uyx) cos θ̂ sin θ̂ = 0 (5)

which may be discretized into a numerical one-pass scheme
based on linear equations for the estimation of u(x, y) on a
digital image grid.

We discretize (5) with the following scheme. For sim-
plicity we use u(m,n) to denotes u(m∆, n∆).

uxx(m∆, n∆) � 1
2 [u(m+1, n)+u(m−1, n)−u(m,n+

1)−u(m,n−1)]/∆2 + 1
4 [u(m+1, n+1)+u(m−1, n−

1)+u(m+1, n−1)+u(m+1, n−1)]/∆2−u(m,n)/∆2

uyy(m∆, n∆) � −1
2 [u(m + 1, n) + u(m − 1, n) −

u(m,n + 1) − u(m,n − 1)]/∆2 + 1
4 [u(m + 1, n + 1) +

u(m−1, n−1)+u(m+1, n−1)+u(m+1, n−1)]/∆2−
u(m,n)/∆2

uxy(m∆, n∆)+uyx(m∆, n∆) � 1
2 [u(m+1, n+1)+

u(m− 1, n− 1)−u(m− 1, n +1)−u(m+1, n− 1)]/∆2

Taking these equations into (5) and solving for u(m,n),
we obtain,

u(m,n) = 1
4 [u(m+1, n+1)+u(m−1, n+1)+u(m+

1, n−1)+u(m−1, n−1)]+ 1
2 [u(m+1, n)+u(m−1, n)−
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u(m,n + 1)− u(m,n− 1)] cos 2θ̂ + 1
4 [u(m + 1, n + 1) +

u(m−1, n−1)−u(m+1, n−1)−u(m−1, n+1)] sin 2θ̂
In the case of discrete block loss (which means that each

lost block has four correctly decoded neighbouring blocks),
we can reconstruct the lost blocks based on the following
scheme. Let

ck
11 =

{
1 + 1

4 sin 2θ̂(m,n) 1 < n ≤ L, 1 < m ≤ L
0 otherwise

ck
12 =

{
− 1

2 cos 2θ̂(m,n) 1 < m ≤ L
0 m = 1

ck
13 =

{
1 − 1

4 sin 2θ̂(m,n) 1 ≤ n < L, 1 < m ≤ L
0 otherwise

ck
21 =

{
1
2 cos 2θ̂(m,n) 1 < n ≤ L,
0 n = 1

ck
22 = −1

ck
23 =

{
1
2 cos 2θ̂(m,n) 1 ≤ n < L,
0 n = L

ck
31 =

{
1 − 1

4 sin 2θ̂(m,n) 1 < n ≤ L, 1 ≤ m < L
0 otherwise

ck
32 =

{
− 1

2 cos 2θ̂(m,n) 1 ≤ n < L,
0 n = L

ck
33 =

{
1 + 1

4 cos 2θ̂(m,n) 1 ≤ n < L, 1 ≤ m < L
0 otherwise

where k = (m − 1)L + n, m and n are the corresponding
row and column of the image block matrix, and L is the
image block size. Then construct matrix A as

A(k, p)

=


 ck

ij
p = (m − 1 + i − 2)L + n + j − 2
1 ≤ p ≤ L2, 1 ≤ i, j ≤ 3

0 otherwise
and let v[k] = −∑

ij ck
ijb

k
ij , k = 1,2,..., L2 and i, j =

1, 2, 3, where,

bk
ij =


 u(m + i − 2, n + j − 2)

1 ≤ m + i − 2 ≤ L
1 ≤ n + j − 2 ≤ L

0 otherwise
Then, we can solve for the reconstructed block (in its raster
vector representation) by the matrix equation

Î = A−1v

3. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm, we
have constructed test images such as the one shown in Fig-
ure 1. In these images, blocks of size 8 × 8 have been lost
in a regular pattern; the black portions of the image are lost
data. In our error concealment experiment, we assume high
rates of block loss but also assume that the block loss is
discrete; that is each lost block has four correctly decoded
neighbouring blocks.

We first compare the PSNR performance of our overall
error concealment scheme, using two different orientation

diffusion schemes in Stage 1: one directly taken from Per-
ona [9] and the other the modified (i.e. weighted) method
described in this paper. On the 25% block loss rate (BLR)
image of Figure 1(a), we obtain the following PSNR recon-
struction results:

BLR
Orientation Model
of [9](PSNR)

Proposed
Model (PSNR)

25% 34.54 35.22

The modified orientation diffusion scheme is superior in
PSNR to Perona’s orientation diffusion scheme because the
modified model weights image edge features in an improved
manner. The error concealment result for the Lenna image
with 50% discrete block loss is 31.87 in PSNR. In this case,
the pixels at the four corners of the lost blocks are recovered
by the interpolation of the adjacent pixels in the available
image blocks. Experimental results from other images yield
similar patterens of PSNR; for example, the results for the
images Elaine and Boat with block loss rates of 25% and
50% are shown in the following table:

Discrete block loss rate 25% 50%
Elaine (PSNR) 35.75 32.64
Boat (PSNR) 31.31 28.33

From these experiments, we see that Elaine is similar to
Lenna in PSNR. For the image Boat the PSNR drops a little
because this image contains a lot of complex linear struc-
tures which are difficult to recover. Finally, from the recon-
structed images in Figure 2 it is evident that the incorpora-
tion of orientation diffusion allows the visually satisfactory
recovery of most blocks despite high block loss rates. Prob-
lems occur only in blocks in which orientation singularities
are manifest; however these are areas of great difficulty for
any error concealment scheme.

(a) (b)

Figure 1: Images for error concealment testing. (a) Image
of Lena with 25% discrete block loss. (b) Image of Lena
with 50% discrete block loss.
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(a)

(b)

Figure 2: Error concealment results for images of Figure 1
by the proposed algorithm: (a) For Lena with 25% discrete
block loss. PSNR is 35.22. (b) For Lena with 50% discrete
block loss. PSNR is 31.87.

4. CONCLUSIONS

In this paper, we present a novel diffusion based error con-
cealment scheme. We adopt an improved orientation es-
timation model based on Perona’s orientation diffusion [9].
This model is found to be able to reconstruct complex orien-
tation fields in lost image blocks. Based on the orientation
field estimated, an efficient directional error concealment
scheme is presented. This scheme is shown to be well-posed
and can be solved using linear equations. Experiments for
images such as Lena show that our model can give bet-
ter results than more traditional models, and without an in-
creased computational cost.
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