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Abstract. We propose a novel method for action detection based on a new ac-

tion descriptor called a shape flow that represents both the shape and movement

of an object in a holistic and parsimonious manner. We find actions by finding

shape flows in a target video that are similar to a template shape flow. Shape

flows are largely independent of appearance, and the match cost function that we

propose is invariant to scale changes and smooth nonlinear deformation in space

and time. The problem of matching shape flows is difficult, however, yielding a

large, non-convex, integer program. We propose a novel relaxation method based

on successive convexification that converts this hard program into a vastly smaller

linear program: By using only those variables that appear on the 4D lower convex

hull of the matching cost volume, most of the variables in the linear program may

be eliminated. Experiments confirm that the proposed shape flow method can

successfully detect complex actions in cluttered video, even with self-occlusion,

camera motion, and intra-class variation.

1 Introduction

An action can be characterized by the movement and deformation of a shape. A flow

line, which is the space-time line formed by a tracked object point over time, provides

a compact representation of motion. An object’s shape flow, which we define simply as

an assembly of flow lines, represents not only the object’s motion but also its shape and

deformation over time. Flow lines have previously been used for motion visualization

[5]. We propose the shape flow as a representation for actions.

Consider the shape flows shown in Fig. 1. One can readily identify complex actions

based on the shape flow alone, suggesting that it is a discriminative and descriptive

representation. The shape flow itself is quite simple to compute. The challenge, which

is the focus of this paper, is how to use the shape flow as a representation for actions.

In particular how can we efficiently search for a template shape flow in a cluttered

single-view video? And how can we do the search in a manner that is invariant to scale

changes and nonlinear shape deformations, and also tolerant of occlusion and intra-class

variation? Although shape flow matching is certainly an NP-hard problem because of

the loopy relations between flow lines, we show that a novel linear relaxation based on

successive convexification [6] yields both an efficient and accurate matching algorithm

for finding actions in video.

There is much related work on detecting actions in video. The first dimension of

related work consists of methods that use multi-view stereo to reliably access 3D spa-

tial information. Parameswaran & Chellappa [12] use multiple cameras to capture joint
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Fig. 1. Example shape flows and first/last frames for a variety of actions. Even though individual

flow lines are noisy, the shape flow represents the holistic shape and movement of the object

reliably. In this paper, we show how to efficiently search for a template shape flow in a target

video. Please note that the figures in this paper are best viewed in color.

locations via motion capture, while Yilmaz & Shah [20] use manually labeled joint lo-

cations. Weinland et al. [18] use multiple cameras to achieve reliable background sub-

traction, using 3D silhouettes of foreground objects to describe actions. These methods

are only tangentially related to this paper, however, as they rely on multi-view stereo.

The second dimension of related work includes methods that rely on background

subtraction to formulate action features from silhouettes of foreground objects either

in 2D or in 3D. Weinland et al. [18] use 3D silhouettes from multi-view stereo, as

mentioned above. Both Yilmax & Shah [19] and Blank et al. [2] use background sub-

traction in 2D images to describe actions as 3D space-time volumes. Bobick & Davis

[3] project space-time silhouettes into the image to get 2D action silhouettes. In this

paper, we address the problem of finding actions in cluttered single-view video with a

moving camera and moving background objects. Silhouette based features, which rely

on high quality background subtraction, are difficult to use in this regime.

The third dimension of related work involves using labeled joint trajectories to de-

tect human actions. In this class-specific approach, joint locations may be labeled in

different ways. Parameswaran & Chellappa use motion capture and manual labeling

for joint locations in 2D and 3D in their work [12]. Yilmaz & Shah [20] use manually

labeled joint trajectories in 3D, and Sheikh & Shah [17] use manually labeled joint tra-

jectories in 2D. Recognizing actions is challenging even with clean joint trajectories.

Although automatic human pose tracking is recently much improved [11, 13] and so

could be used to extract (unclean) joint trajectories from unlabeled video, we pursue a

non-parametric approach of analyzing the whole motion field rather than the motion of

distinguished high-level feature points.

The final dimension of related work consists of non-parametric action models, and

contrasts methods that rely on sparse descriptors located at interest points versus meth-

ods that use a dense motion or gradient field. These methods typically operate on un-

calibrated single-view video, do not require background subtraction, and do not require

manual labeling of foreground objects. Laptev & Lindeberg [9] have extended the no-
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tion of Harris extrema to find space-time interest points. Schuldt et al. [14] use motion

and gradient histograms around these interest points to recognize actions using SVMs.

Scovanner et al. [15] extend the popular SIFT descriptor to space-time volumes for

the purpose of action recognition. Instead of constructing features that are tolerant to

clutter, one may instead use dense feature fields along with clutter-tolerant matching.

Efros et al. [4] recognize actions using optical flow fields from single frames, carefully

smoothed and rectified. Shechtman & Irani [16] cleverly match space-time volumes di-

rectly, without any explicit motion estimate. Ke et al. [7] have extended that work using

superpixels and part-based matching. Laptev & Prez [10] match histograms of gradients

from space-time cubes using a boosted cascade.

These non-parametric methods represent a recent trend toward using volumetric

space-time descriptors that combine shape and motion information, along with a match-

ing framework that tolerates both foreground deformation and background clutter. We

adopt this general approach to finding actions, although our proposed shape flow de-

scriptor is neither an interest point method nor a dense field approach. As is clear in

Fig. 1, the shape flow preserves much information about both the shape and movement

of an object in a manner that is largely independent of the object’s appearance. This

enables us to match both shape and motion in a uniform framework.

The outline of the paper is as follows. In §2 we describe a simple method to compute

shape flows. In §3, we formulate the shape flow matching problem and show how this

NP-hard problem may be solved efficiently using a novel relaxation scheme. We present

experimental results in §4 and conclude in §5.

2 The Shape Flow of an Action

We desire a compact yet expressive descriptor of both the shape and motion of an object.

In addition, we seek a general method that may be applied to any object class, so we

do not attempt to track distinguished points (such as joints) or to impose a shape model

a priori. Instead, we seek a non-parametric shape and motion representation. We adapt

the technique of flow fields from motion visualization [5]. If points on an object may be

tracked in 2D video, then their positions through time form a flow field of lines in 3D.

Flow lines will inevitably be individually unreliable, but the collection of flow lines—

the shape flow, as shown in Fig. 1—is a compact and descriptive action representation.

We use a greedy scheme to compute flow lines based on iterative conditional modes

(ICM) [1] to estimate the sparse point motion between adjacent frames. ICM is based

on an MPEG-like local motion estimation search; it computes motion vectors that both

minimize an image match cost and maximize the the motion consistency of neigh-

boring points. We apply ICM to edge pixels that surpass a Canny detector threshold;

neighborhood relations are defined by the Delaunay triangulation of these edge pixels.

The resultant sparse motion field is then interpolated across Delaunay cells to produce

a dense motion field. The frame-by-frame motion fields produced by this procedure are

then simply concatenated to form 3D flow lines in the space-time video volume. There

are no constraints to prevent flow lines from intersecting.

This method for computing flow lines is designed to produce flow lines that are

good enough on average to generate a coherent flow field, since our robust matching

procedure tolerates flow line errors. Although the method is greedy, one can see from
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(a) Template shape flow (b) Template graph (c) Target video flow

(d) This paper (e) DP (f) ICM

Fig. 2. Matching shape flows. A template shape flow (a) and its neighbor relation graph (b) are

matched to a target video (c). Note that stationary points in (a) and (c) produce flow lines orthog-

onal to the page, which are depicted as dots. The matching result using the proposed method of

this paper (d) is superior to the result achieved either by dynamic programming (e) or iterative

conditional modes (f). In (d-f), the blue dots denote the start points of target candidate flow lines.

Fig. 1 that the flow lines are actually quite clean. More accurate but computationally

more expensive methods such as [8] could be used to improve the flow line extraction.

Although the collection of flow lines that we compute is dense, for computational

considerations we sample the field in both the template and the target. The spatial local-

ization of flow lines in a shape flow is therefore somewhat imprecise. However, any lo-

calization error introduced by this sampling process is overwhelmed by variation caused

by viewpoint changes and intra-class shape and motion variation. We now turn to the

shape flow matching procedure.

3 Matching Shape Flows for Action Detection

In this section, we address the problem of matching a shape flow to a target video. We

desire the matching to be scale invariant, operate in significant clutter, and also to be

tolerant to spatial and temporal deformations caused by viewpoint variation and intra-

class variation. The problem is made more difficult by the fact that the relationships

between flow lines in a shape flow, which are defined by a Delaunay triangulation, form

a loopy graph. We present a novel relaxation method that can accomplish effective and

efficient matching using a compact linear program.

3.1 An Example

Before describing the matching procedure, we present the matching example shown in

Fig. 2 in order to elucidate both the problem statement and the shape flow representa-

tion. Figs. 2(a,b) show the top-down view (projected along the time axis) of a template

shape flow for a person waving both arms. Note that the shape flow consists of a col-

lection of flow lines (a) related by a neighborhood graph (b) given by the Delaunay
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Fig. 3. (a) Matching a template shape flow to a target video frame. See Eq. 1. (b) Linearizing

the problem with respect to scale. By quantizing the range of scales, the nonlinear scale factor

is replaced by scale-specific indicator variables ξ. This quantization of scale is not a problem

because the matching cost can tolerate some scale difference between the template and target.

triangulation of the flow line start points. Fig. 2(c) shows the top-down view of the flow

lines in the target video volume, which are sampled from edge pixels in the first frame.

Note that the target is a different person at a different scale, and that, individually, the

target flow lines differ significantly from those in the template.

The problem is to find an assignment between flow lines in the template and flow

lines in the target so that (1) the paired flow lines are similar, and (2) the spatial re-

lationships between flow lines as given by the neighbor graph are respected. Fig. 2(d)

shows the matching result using the method proposed by this paper. Not only is the tar-

get detected and well localized, but the assignment of flow lines between the template

and target is sensible.

Our proposed method’s success relies on the combination of matching the loopy

relation graph and doing a robust global search. We can see the result of removing one

or the other of these elements. Fig. 2(e) shows the result of our method if the loopy

graph is replaced by a chain. In this case, without cycles, the matching may be done

efficiently using dynamic programming (DP). Fig. 2(f) shows the result of using the

fully loopy graph, but using ICM instead of our proposed linear relaxation. The DP and

ICM results are poor, despite the fact that both methods were given the advantage of

having the template pre-scaled to the target scale.

3.2 The Matching Problem

The template shape flow consists of a set of flow lines. These flow lines originate from

randomly selected edge points on the object. Pairwise neighbor relationships between

flow lines are given by the Delaunay triangulation of the flow line start points. Thus, the

neighbor graph has cycles. All of the flow lines in the template have the same temporal

extent, but vary in length due to motion.

The target search domain is a space-time video volume having the same temporal

extent as the template action. The search is performed over a randomly selected subset

of flow lines anchored by edge points in the first frame of the volume. The goal is to find

a consistent assignment of flow lines in the template to flow lines in the target. Matched

flow lines should be similar, and the spatial arrangement in the target should match that

of the template. We assume that there is little change in rotation between the template

and target, but that there may be a large change in scale.
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Let S denote the template point set and N the set of neighbor point pairs in the

template. We formulate shape flow matching as the following optimization problem:

min
t,l







∑

s∈S

c(s, t(s), l) + λ
∑

{p,q}∈N

||(p − q) − (l · t(p) − l · t(q))||







(1)

where t(s) maps template point s to the target point, and c(s, t, l) is the cost of match-

ing s and t with scale l. The first term in the energy function is the cost of matching

individual flow lines. The second term penalizes assignments that violate the relative

positions of flow lines given by the neighbor graph N. λ weighs the relative importance

of the two terms. We wish to find an assignment t(·) and scale l so that the template

shape flow matches a target shape flow with small cost in a spatially consistent manner.

The matching cost c between a pair of flow lines is computed as follows. Flow lines

are normalized to a common spatial diameter (but regularized to account for stationary

flow lines, which have zero diameter). Each flow line has the same number of sample

points, given by the number of frames in the template. The matching cost is given

simply by the Euclidean distance between the two vectors formed by the normalized

flow lines’ 2D spatial coordinates. Because of the spatial normalization, the flow line

matching cost is scale invariant. One could use scale-specific matching costs, but we

found this simpler method to be sufficient.

As stated, this optimization problem is difficult to solve. It is discrete, nonlinear, and

highly non-convex. In addition, the loopy relation graph precludes efficient search. We

are, however, able to solve this optimization problem effectively. In the following sub-

sections, we show how to remove the nonlinearities, how to deal with the non-convexity,

and how to dramatically reduce size of the search space, yielding a fast and small linear

program solution.

3.3 Linearization

As stated, the optimization problem is a nonlinear integer program. The first step in

transforming the problem into a linear program is to remove the nonlinearities. As

shown in Fig. 3, we may remove the nonlinear scale factor from the energy function

by searching over a range of m discrete scales L = {l0, l1, ..., lm−1}. We use m = 7
scales, equally spaced between half and double the template’s natural scale. Let ξs,t,l
be binary indicator variables that take the value 1 when template point s matches target

point t at scale l. The nonlinear scale factor is replaced by the scale-specific indicator

variables ξ. Quantizing scale in this manner works because the matching tolerates small

differences in scale between the template and target shape flows. The first term of Eq. 1

may therefore be linearized as follows:

∑

s∈S, t∈T(s), l∈L

c(s, t, l) · ξs,t,l (2)

where T(s) is the target candidate point set for template point s. In order to linearize the

second term in the energy function, we use the L1 vector norm and a standard linear

program trick to linearize the absolute value function. By introducing some pairs of
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auxiliary variables, the second term may be linearized as follows:

λ
∑

{p,q}∈N

(u+
pq + u−

pq + v+
pq + v−pq) (3)

where u+
pq, u−

pq, v+
pq and v−pq are non-negative auxiliary variables. Let x(.) and y(.) be

functions that extract the x and y coordinates of a point. The auxiliary variables follow

the constraints ∀{p,q} ∈N :

u+
pq − u−

pq = up − uq − x(p) + x(q) v+
pq − v−pq = vp − vq − y(p) + y(q) (4)

and where up and vp are x and y coordinates of the scaled target point l · t(p):

us =
∑

t∈T(s), l∈L

l · x(t) · ξs,t,l vs =
∑

t∈T(s), l∈L

l · y(t) · ξs,t,l (5)

If the objective function is optimized given these constraints, at least one of u+
pq or

u−
pq and at least one of v+

pq or v−pq vanishes. The proof of this fact is by contradiction:

If it were not the case, then we could subtract the smaller value in each pair from

u+ and v−, producing a feasible solution at lower cost. Based on this observation,

u+
pq + u−

pq = |up − uq − x(p) + x(q)| and v+
pq + v−pq = |vp − vq − y(p) + y(q)|,

and therefore u+
pq +u−

pq + v+
pq + v−pq = ||(p − q)− (l · t(p)− l · t(q))||. The original

energy minimization problem of Eq. 1 is now linear.

Additional constraints enforce that the matching is an assignment, where each tem-

plate point matches a single target point:

∑

t∈T(s), l∈L

ξs,t,l = 1, ξs,t,l = 0 or 1, ∀s ∈ S (6)

And we constrain each pair in the assignment to select the same scale w, so that the

template scales uniformly:

∑

t∈T(s), l∈L

l · ξs,t,l = w, ∀s ∈ S (7)

The matched target points are given by:

t̂x =
∑

t∈T(s), l∈L

x(t) · ξs,t,l t̂y =
∑

t∈T(s), l∈L

y(t) · ξs,t,l (8)

The original nonlinear integer problem has been transformed into a linear integer pro-

gram without any approximations: The linearized version solves the original problem

exactly, apart from the effects of quantizing scale. The problem is still integer, however,

and still non-convex. The following subsection addresses both of these issues.

3.4 Relaxation and Convexification: The Lower Convex Hull Property

Due to the computational expense of integer programming, we relax the indicator vari-

ables ξs,t,l so that instead of taking discrete binary values they take continuous values
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(l•t, l)

c(s, t, l)

(a)

c(s, t, l)

Lower Convex 

Hull (l•t, l)

(b)

  Convexified Matching 

Cost for Template Point s

: Lower Convex Hull Vertex

: Variable Index in 

   Simplified Linear 

   Program

(l•t, l)

(c)

Fig. 4. Convexification using the 4D lower convex hull. The actual cost surface of the integer

program is non-convex (a). Relaxing the ξ yields a linear program, the solution for which lies on

the lower convex hull (b) of the original cost surface. Any variables corresponding to points above

this surface are redundant in the linear program, so they may be pruned (c). In our formulation, the

cost surface is 3D, and so the lower convex hull is 4D. As the dimensionality increases, pruning

becomes proportionally more effective.

in the unit interval. In this now linear program, the ξ correspond to a kind of likelihood

that a template flow line matches a target flow line at a particular scale. The program

is very large, however: The number of variables ξs,t,l is proportional to the number of

template points, the number of candidate points, and the number of discrete scales. We

can greatly reduce the number of ξ variables without changing the solution of the linear

program by taking advantage of the following property.

Property: We need keep only those ξs,t,l that correspond to the vertices of the 4D

lower convex hull of the point clouds (l·t, l, c(s, t, l)) with respect to the last coordinate

for each s.

As depicted in Fig. 4, the solution to a linear program may be found by exploring

the lower convex hull of the cost surface. Variables corresponding to interior points,

depicted as gray dots in Fig. 4(b), are algebraically redundant because they may be

represented as linear combinations of points on the hull. These “interior variables” may

be safely removed from the linear program without affecting its solution.

This convexification procedure can reduce the size of the linear program and there-

fore greatly speed up its solution—by a factor of 100 or more in our experiments in this

problem domain. Note that if c(s, t, l) is convex over (l · t, l) for each s in the original

integer program, the relaxed linear program will find the global optimum.

3.5 Iterative Refinement

In general, the cost surface c(s, t, l) is non-convex over the domain (l · t, l). Because

of the convexification, and because of the interactions between variables from N, the

linear relaxation gives an approximate solution. The magnitude of the approximation

error depends on the size of the domain, however, because the convex approximation

will be more accurate when the domain is smaller. This suggests an iterative approach

known as successive convexification [6].

Initially, the search window, or trust region, covers the entire target domain: Ev-

ery point in the target frame is a possible matching candidate for each template point at

every scale. In this case, the matching will still likely find the correct target, but the con-

vexification introduces localization errors. Given a solution, we may iteratively shrink

the trust region over the domain (t, l), each time repeating the convexification and linear

relaxation procedure. As the trust region shrinks, the lower convex hull fits the original

cost surface more accurately, and the template is localized in the target more accurately.
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(a) Sampled frames from the 1000-frame fitness video.
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(b) Template #1, top 7 matches, and per-frame match cost.
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(c) Template #2, top 7 matches, and per-frame match cost.

Fig. 5. Detection of two 15-frame actions in the fitness video. The graphs show the per-frame

match cost for the template; blue dots mark the locations of true positives. For each template and

match, there are three images: (1) the first frame of the action with the template’s neighbor graph,

frame number F, and match cost C; (2) the second frame of the action; and (3) the last frame of

the action. In (b), the top 6 matches correspond to the 2 true positives for a right leg out action.

In (c), the top 5 matches correspond to the 1 true positive for a right arm out, left knee out action.

In these examples, which include significant camera motion, there are no errors.

At most 5 iterations are required, and the program shrinks geometrically in size at each

iteration.

4 Empirical Evaluation

We show experimental results for the proposed action detector on a wide range of videos

and on the action dataset of Blank et al. [2]. The output of the optimization described

above is the best match for a template in each frame of the target video, whether that
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(a) Sampled frames from the 3501-frame sign video.
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(b) Template #1, top 5 matches, and per-frame match cost.
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(c) Template #2, top 5 matches, and per-frame match cost.

Fig. 6. Compare with Fig. 5. In (b), the top 4 matches correspond to the 2 true positives for a 7-

frame exchange action. In (c), the top 5 matches correspond to the 4 true positives for a 15-frame

message action; the message template is partitioned into left/right halves. In these examples,

which involve self-occlusion, there are no errors.

match is good or bad. We require a method of ranking the matches by quality, across

frames, to generate a top-list for action detection.

4.1 Scoring Action Matches and Ranking Results

The energy function that we minimize to find an action in a video frame is effective at

locating the best match within a frame. However, the energy values cannot be meaning-

fully compared across frames. There are two reasons for this. First, the flow line match

cost in the linear program is totally scale invariant, which is too lenient for a cross-

frame match score. And second, the energy will be artificially low when the template is

matched against a partially similar action; for example, a template of a person waving

one arm will match well to a target waving two arms, but should not be scored high.

To address these issues, we formulate a more robust similarity measure between the

template shape flow and the matched target shape flow. First, we normalize the flow

lines within each shape flow by the mean flow line length, and translate each flow line

start point to the origin. The distance between these two bundles of normalized and

shifted flow lines is defined as the average minimum distance between individual flow

lines across bundles, which is a symmetric measure. The distance between individual
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Frame 0550

(a) Template

Frame 0456
Cost 0.468

(b) 1st match

Frame 1676
Cost 0.531

(c) 2nd match

Frame 0683
Cost 0.607

(d) 3rd match

Frame 1563
Cost 0.620

(e) 4th match

Fig. 7. Detection of a complex 15-frame action in the 2091-frame gymnastics video. The action is

the first half or a forward flip on the balance beam. The top row of images shows frames sampled

uniformly in time from the video. Column (a) shows the action template along with three frames

(beginning, middle, end) from the action. Columns (b-e) show the top 4 matches. The sequence

contains 3 true positives, which are the top 3 matches. In this example, which involves rapid and

complex object motion as well as camera motion and background clutter, there are no errors.

flow lines is again defined as the Euclidean distance between the flow lines’ spatial

coordinate vectors.

As stated, this shape flow distance measure discards all information regarding the

relative position of flow lines. For most actions, for ranking results, this is not a problem.

However, consider the highly symmetric actions shown in Fig. 6(c). Because the flow

lines on the left arm of one action will have low distance to the flow lines on the right

arm of the other action, the total distance will be very low. Consequently, for such

actions, we break the symmetry by partitioning the template into halves. Normalization

is still performed on the entire template, but the distance is computed for each part

separately. The total distance for a partitioned template is simply the average distance

of the parts, weighted by the number of flow lines in each part. All of the results in this

paper use a whole single-part template; only the action in Fig. 6(c) required a (left-right)

template partition.

4.2 Results

We first present action detection results for single actions in four extended videos. Fig. 5

shows results for the fitness video; Fig. 6 for the sign video; Fig. 7 for the gymnastics

video; and Fig. 8 for the golf video. In all cases, the top matches are determined using
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Fig. 8. The top 30 detections for a 8-frame swing template action in an 8000-frame video golf.

There are 10 hits (with duplicates) of 14 true positives and 11 false positives, yielding 71% recall

and 63% precision. This is a difficult video with few true positives compared to negatives, and

much camera motion.

the shape flow distance measure described in the previous subsection. These videos

involve fast object motion, camera motion, and background clutter. In addition, the

template and target are always of different people, which introduces scale variation,

pose variation, and intra-class variation.

Fig. 5 shows match results for two 15-frame actions in the 1000-frame fitness video.

All true positives from the video appear at the front of the list of top matches. Fig. 6

shows the same perfect result for the detection of two 15-frame actions in the 3501-

frame sign video. In both videos, there are multiple positives per true positive because

the top list ranks matches from all frames in the video. The fitness video involves a mov-

ing camera and background clutter; the sign video involves background clutter (there

are many stationary flow lines in the background) as well as complex self occlusion.

Despite these challenges, the actions are detected successfully.

Fig. 7 shows match results for a complex 15-frame action in the 2091-frame gym-

nastics video. After applying non-minima suppression in the time dimension to the

per-frame match scores, the three true positives appear as the top three matches. Non-

minima suppression is not necessary, but prunes duplicate matches from the top list.

Despite background clutter, constant camera motion, and significant intra-class varia-

tion, the proposed method is again successful.
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Fig. 9. Detecting actions in the video dataset of Blank et al. [2]. The dataset consists of 93 single

action video clips for 10 actions. The 10 actions are: running (Run), walking (Walk), side stepping

(Side), jumping in place (VJump), waving one arm (Wave1), waving two arms (Wave2), forward

jumping (FJump), forward hopping (FHop), jumping jack (JJump), and bending (Bend). We use

a single action template for each action class. Graphs (a-j) show, for each action, all 92 clips

(template clip excluded) sorted by match score when matched against that action template; the

y-axis places each clip into its ground truth category. Most of the same category target clips (red

dots) are ranked first, which is the goal. Graphs (k-t) show the corresponding precision recall (PR)

curves for the 10 actions. We achieve high precision and recall for 8 of 10 actions; the FJump and

FHop actions are extremely similar visually, and panels (g,h) show that they get confused with

each other.

Fig. 8 shows results for a 8-frame swing action in the 8000-frame golf video. This is

the most challenging of the four videos, and demonstrates some match failures. The top

30 matches are shown over the entire sequence. There are 10 hits of 14 true positives

with 11 false positives, yielding 71% recall and 63% precision (accounting for duplicate

hits). This sequence involves much camera motion, a variety of individuals as targets,

and highly variable background clutter. In addition, there are many distractor frames in

which there is no relevant object present.

We also report results for the action recognition dataset of Blank et al. [2] in Fig. 9.

The dataset consists of 93 single action video clips for 10 actions performed by various

subjects. We extract a single 15-frame shape flow template for each action by randomly

choosing a 15-frame sequence from a randomly chosen clip. Each template is then

matched against each frame in the set of test clips (excluding the template clip). The

match cost for a clip is taken as the minimum match cost across frames in the clip.

Fig. 9 shows that the top matching clips have the correct class, yielding high perfor-

mance precision recall curves for 8 of 10 classes; the FJump and FHop classes are not

distinguished well by our detector, but that is because they are visually extremely sim-

ilar. The equal precision-recall point across the dataset is 90%. Excluding the FJump

and FHop categories, the equal PR point is at 95%.
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5 Conclusion

We have proposed a novel representation for actions called the shape flow, which in-

corporates both the shape and motion of an object in an assembly of easily computed

flow lines. We have formulated action detection and localization as an energy mini-

mization problem, yielding a difficult nonlinear, non-convex integer program. We show

how to linearize this energy function, and how to use successive convexification of the

energy cost surface to relax the program and vastly reduce the size of the linear pro-

gram without approximation. Experimental results on difficult videos and a standard

action detection dataset confirm that the proposed method can accommodate complex

object motion and self-occlusion, camera motion, background clutter, scale changes,

pose variation, and intra-class variation. The method is non-parametric, and requires

neither background subtraction nor accurate trajectories. We believe that this method is

a useful tool for automatic action detection.
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