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Abstract

Recognizing every person’s action in a crowded and clut-
tered environment is a challenging task in computer vision.
We propose to tackle this challenging problem using a holis-
tic 4D “scan” of a cluttered scene to include every detail
about the people and environment. This leads to a new
problem, i.e., recognizing multiple people’s actions in the
cluttered 4D representation. At the first step, we propose a
new method to track people in 4D, which can reliably detect
and follow each person in real time. Then, we build a new
deep neural network, the Action4DNet, to recognize the ac-
tion of each tracked person. Such a model gives reliable and
accurate results in the real-world settings. We also design
an adaptive 3D convolution layer and a novel discrimina-
tive temporal feature learning objective to further improve
the performance of our model. Our method is invariant to
camera view angles, resistant to clutter and able to han-
dle crowd. The experimental results show that the proposed
method is fast, reliable and accurate. Our method paves
the way to action recognition in the real-world applications
and is ready to be deployed to enable smart homes, smart
factories and smart stores.

1. Introduction
Action recognition is a key task in computer vision.

Even though human vision is good at recognizing subtle

actions, computer vision algorithm still cannot achieve the

same robustness and accuracy. The difficulty is largely

caused by the variations of the visual inputs. The input

video may be crowded and cluttered. People may have dif-

ferent clothing, different body shapes and are highly artic-

ulated. They may perform the same action in slightly dif-

ferent ways. The camera viewing angles can be drastically

different so that the same action in the training videos may

look quite different from those in the testing videos.

To tackle the above challenges, in this paper, we propose

a novel 4D method for robust action recognition. The input

of our method is a 4D volume of the dynamic environment

Figure 1. Examples of the inference results of our action recog-

nition system on a crowded and cluttered environment with four

Kinect V2 cameras. The top two rows show the projected 3D

bounding boxes on each camera view given by our multiple-people

tracker. The last row shows the volumes generated from the four

calibrated depth cameras for each subject with different actions.

constructed from multiple calibrated RGBD cameras. Fig-

ure 1 illustrates our scheme. The proposed method tracks

each individual person using the 4D representation and rec-

ognizes their actions. It is view invariant, able to handle

crowd and clutter, and scalable to applications in a huge

space with hundreds of cameras.

Recognizing multiple people’s actions in cluttered 4D

volume is a new and challenging problem. To the best of

our knowledge, our method gives the first solution to this

problem. In particular, we propose a novel Action4DNet to

recognize the action of each subject in a cluttered environ-

ment using online 4D modeling. Our work has the follow-

ing contributions:



• We tackle the new problem of recognizing multiple

people’s actions in cluttered 4D volume data.

• We propose a new people detection and tracking

method using the 4D volume data in real time.

• We propose a new deep neural network, Action4DNet,

for action recognition. We design an adaptive convolu-

tional layer to deal with the nose introduced from mul-

tiple camera sensors. We also propose a new discrim-

inative loss for better temporal feature learning in se-

quential action recognition. To the best of our knowl-

edge, our approach is the first attempt to apply deep

neural networks to cluttered “holistic” 4D volume data

for online frame-wise action recognition.

• We collect and label a new 4D dataset in our experi-

mentation. There is no existing 4D action recognition

dataset that includes multiple people and clutter. We

will publish the dataset.

• Our proposed method is resistant to crowd and clut-

ter, and it can be directly used in complex real-world

applications.

1.1. Related works

In previous studies, most action recognition methods

work on single view 2D videos. Accumulated foreground

shape [1] has been used to recognize the actions in the Kid-

sRoom project. In [28], shape context is used to model

the whole body configuration in action recognition. Apart

from RGB color, motion is also a useful feature for action

recognition [9]. Other popular handcrafted features for ac-

tion recognition include spatial-temporal features [14] and

spatial-temporal volumes [4]. Based on these features, ac-

tion detection and recognition can be formulated as a match-

ing problem. By careful design, we do not even need to di-

rectly extract the features; the space and time matching can

be efficiently solved using low rank analysis [23].

In recent years, deep learning has been widely used in

action recognition and detection using RGB videos [12, 30,

24, 8, 7]. These deep learning methods use multiple streams

such as color, motion, body part heat map and find actions in

the spatial-temporal 3D volume. Single view depth images

have also been used in action recognition [26]. However,

training classifiers for action recognition using 2D RGB or

depth videos is a challenging task. It requires training data

to include all kinds of variations about camera settings, peo-

ple clothing, object appearances, and backgrounds.

Most of the current 3D action recognition methods de-

pend on Kinect 3D skeleton extraction [17, 21, 22], which

can relieve the view dependency issue in 2D action recog-

nition. Unfortunately, Kinect skeleton estimation becomes

unreliable in cluttered environments. In addition, 3D skele-

tons alone are insufficient for action recognition. For in-

stance, disambiguating actions such as playing with phone

and reading a book is tricky without knowing the objects

in people’s hands. 3D people volume from visual hull

[15] has also been extensively used in action recognition

[5, 29, 11]. Traditional visual hull methods usually need

special blue/green or static background and background

subtraction to single out people from the background. This

greatly limits its usability in real-world applications.

In contrast, our method works directly on cluttered 4D

volume data. The volume representation includes not only

people but also the objects they are interacting with. With-

out the dependency on people segmentation, our method

can be robustly applied to action recognition in crowded and

cluttered environments.

2. Method

Our task is to recognize individuals’ actions in a clut-

tered and crowded environment. Our method starts with

the construction of 3D volume representation of the whole

scene at each time instant. Then, we propose a new people

detection and tracking method using sequential 3D volume

data of the whole scene. In such a way, we can crop each

person-centered 3D volume at each time instant. These as-

sociated 3D volume sequences by our 4D tracker are used as

input to build our Action4DNet. The details are discussed

in following sections.

2.1. People detection and tracking

Detecting each subject in the scene is a necessary step

before we can recognize the action of each individual. For

action recognition, we also need to observe every subject in

a duration. We thus need to track each person in the scene.

Tracking also helps remove false people detections and re-

cover the missing ones. Most of the previous multiple peo-

ple tracking methods usually use background subtraction to

remove the background clutter. Unfortunately, background

subtraction or figure/ground separation is hard for uncon-

strained dynamic environment. Our 4D tracker does not

need figure/ground separation and is able to work on the

noisy 4D data directly.

Given a set of calibrated RGBD images, we build the 3D

point cloud of the whole scene. The volumes are built on top

of the 3D point cloud. We set the occupancy of a voxel O(i)
to one if there is a point in it. These voxels are on the scene

surface of the environment. It is also possible to fill the

internal voxels of each object. However, our experiments

suggest that action recognition does not benefit much from

such a denser representation. We thus only use the surface

volumes in this work.
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Figure 2. (a): People classification CNN. (b): We find disjoint

paths on the tracking graph.

2.1.1 People candidate proposal

We use a light-weight people candidate proposal scheme

as follows: let f(x, y, z) be the volume data and assume

z = 0 is the ground plane. The top-down envelop im-

age is g(x, y) = maxk(k (f(x, y, k))), where (ε) is an

indicator function which equals 1 if ε > 0, otherwise 0.

Based on the observation that each potential object corre-

sponds to at least one local maximum on g, we use a simple

Gaussian filter to extract the candidates. The local maxima

are found on the Gaussian filtered top-down envelope us-

ing non-maximum suppression. Each candidate volume is

a cuboid around a local maximum with a given width and

height. Currently, we set the height of the cropped volumes

to be the height of the whole scene volume.

We train a 3D CNN to classify each candidate volume to

be people or non-people. The people classifier using CNN

structure is shown in Figure 2 (a), which consists of a se-

quence of 3D convolution layers, ReLUs and pooling layers

(ReLUs are not shown), followed by a multi-layer percep-

tron (MLP). The 3D people classifier gives the probability

of each candidate 3D bounding box containing a person.

Even with just a few thousand frames of training data, the

people detector can achieve high accuracy to support the

following data association for people tracking.

2.1.2 Data association

With the extracted candidates, people tracking can be for-

mulated as a path following problem. We try to link the

detected trajectories to the detections in the current frame t
and the next n frames. Here n is a small number, e.g., three.

The tracking graph is shown in Figure 2 (b). There are

three kinds of nodes in the graph: the rectangle nodes rep-

resent the trajectories already formed, the oval nodes repre-

sent candidates, and the pentagon nodes are the prediction

nodes. The number of prediction nodes equals the num-

ber of candidate nodes plus the number of the prediction

nodes at previous time instant. The edges indicate possi-

ble matches between nodes. The edge weights are deter-

mined by the difference of the probabilities from our 3D

Figure 3. Sample tracking results of the proposed method. (a) Vi-

sualization of our tracking results. On the left of the screen is the

top-down view with each numbered red circle representing one

person. On the right is the real-time 3D point cloud. (b) We use

two other RGB cameras to capture the corresponding side views

of our lab.

people classifier, the Euclidean distance, the occupancy vol-

ume difference, and the color histogram difference between

neighboring nodes. The trajectory node also has a weight

inversely proportional to the trajectory length. To track ob-

jects in the scene, we find the extension of each trajectory

from time t − 1 to t + n, so that these paths pass each tra-

jectory node and all the paths are node disjoint.

This optimization problem can be reduced to a min-cost

flow problem and it can be solved efficiently using a poly-

nomial algorithm [19]. Each trajectory is only extended to

the neighboring nodes within a radius dL, which is deter-

mined by the max speed of a person and the frame rate of

the tracking algorithm.

After the optimization, we extend each existing trajec-

tory by one-unit length. We remove trajectories with low

people score, which is computed as the weighted sum of the

current people probability and the previous people score.

And, we include new trajectory for each candidate node at

time t that is not on any path. The new set of trajectories are

used to form a new graph for the next time instant.

Our people detection and tracking algorithm is robust

against clutter and crowd. Figure 3 shows sample results

from our 4D tracking over a few thousand frames. The

tracker is able to handle cases such as putting a box above

the head as shown in Figure 3 (b).

2.2. Action recognition

The above tracker gives us accurate 3D locations of each

subject at each time instant, which can be used to crop out

3D volumes for action recognition. Figure 4 shows the

cropped volume representations, where persons are at the

center. Even with the cluttered background, the volume rep-

resentation clearly shows the action of a person. As a mat-

ter of fact, the background objects are desirable for action

recognition because of their context information.

We process the 4D volume (sequence of 3D volumes)

data to infer the action at each time instant. There are many

other clues that can be used to infer the action of a person,

e.g., the body poses, the movement of body parts, and the

objects the subject is handling. For instance, if we see a

chair underneath a person, we can infer that the person is
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Figure 4. We recognize actions using volumes (color represents

the height of each voxel). The action can be easily identified even

from a static snapshot. The actions are (a) bending, (b) drink-

ing, (c) lifting, (d) pushing/pulling, (e) squatting, (f) yawning, (g)

calling, (h) eating, (i) opening drawer, (j) reading, (k) waving, (l)

clapping, (m) kicking, (n) pointing, (o) sitting, and (p) browsing

cell phone. These real-time generated volumes are fed into our

Action4DNet for action recognition.

sitting. Potentially, the position or the speed of each person

can also be used to infer specific actions. However, in this

paper we depend on the volume data alone for building our

4D action recognition model.

We construct deep convolutional neural network, Ac-

tion4DNet, for accurate action recognition. The input 4D

volumes go through a sequence of 3D convolution layers

combined with 3D pooling layers to produce action fea-

tures. Meanwhile, we also propose to use an auxiliary at-

tention net, which will be discussed in more details in the

following subsections. These features at each time instant

are fed into a Recurrent Neural Network (RNN) to aggre-

gate the temporal information for final action classification.

In the following, we present the network structures in

more details.

2.2.1 Attention Action4DNet

xt

ht-1

Figure 5. Our proposed attention Action4DNet.

Figure 5 shows the proposed neural network architecture

for action recognition using the volumetric data. It starts

with several 3D convolution layers followed by 3D max-

pooling layers. Then, attention model [2, 18] is employed

to automatically learn the most relevant local sub-volumes

features, and global max-pooling [16] is used for global fea-

tures. Both features are the inputs to the Recurrent Neural

Network (we use LSTM) for action classification.

Let V ∈ R
F×L×W×H be the output from the last 3D

convolution layer, where F is the number of filters, L, W
and H are the size of the 3D output. In particular, each

location in the 3D output can be represented as vijk ∈ R
F

for 1 ≤ i ≤ L, 1 ≤ j ≤ W and 1 ≤ k ≤ H . The attention

weights for all vijk are computed as

βijk = hT
t−1Uvijk (1)

α = softmax(β), (2)

where α ∈ R
L×W×H is the attention weights, U ∈ R

D×F

is the weight matrix to be learned and ht−1 ∈ R
D is the

previous hidden state of size D from the Recurrent Neural

Network. In such a way, the network is expected to auto-

matically discover the relevance of different sub-volumes

for different actions.

Next, the local feature v is computed as the weighted

sum of all the sub-volume features vijk

v =
∑

i,j,k

αijkvijk. (3)

In addition, we employ a 3D convolution layer followed

by a global pooling layer to obtain the global feature g (see

Figure 5). Next, both the global feature g and the local at-

tention feature v are supplied to the LSTM cell to capture

the temporal dependencies. The action classification model,

which is a multi-layer perceptron (MLP), takes the hidden

state from the LSTM cell as input to recognize different ac-

tions at each time instant.

2.2.2 Adaptive convolutional layer

In previous section, we describe our attention Action4DNet

using standard 3D convolutional neural networks. In real-

world environments, camera sensors and multiple camera

calibrations can introduce noises to the generated volumes.

In our volume representations, these noises could lead to

different activation outputs for a regular convolutional layer.

It is attractive if the model itself can adapt to the noise. We

propose the adaptive convolutional layer, which is designed

with an extra adaptive activation mechanism.

Again, let V ∈ R
F×L×W×H be the output from the last

3D convolution layer. Then, we attach another convolution

layer with two 1 × 1 × 1 kernels followed by a softmax

operator. The output is denoted as Z ∈ R
2×L×W×H , which

serves as the adaptive probability for each location in V . We

produce the new outputs at location (i, j, k) as

V ′[:, i, j, k] = Z1ijk ∗ V [:, i, j, k], (4)



where ∗ is the product between a scalar Z1ijk and a vec-

tor V [:, i, j, k] ∈ R
F . This layer can be inserted into any

regular 3D convolutional layers. We call them adaptive con-

volutional layers.

2.2.3 Discriminative temporal feature learning

RNNs are designed for capturing temporal dependencies.

State-of-the-art action recognition models also apply RNNs

for action recognition [25] in order to understand and incor-

porate temporal information in videos. However, the tem-

poral transitions are more difficult to capture in continuous

domains, such as videos than in discrete domains, such as

natural languages. Recently, optical flow has been widely

employed to assist the model for better temporal feature

learning. The computation of optical flow requires more

computing power. In addition, it is more difficult in our 4D

scenario, due to the noise in our large volume data.

Instead, we expect the model can learn to distinguish the

stepwise states by only looking at the sequential data. To

achieve this goal, we propose a margin-ranking loss, which

tries to differentiate the temporal features in a given train-

ing sequence. Let H = {h1,h2, . . . ,hn} be the hid-

den states from the recurrent neural network (see Figure 5).

We add additional semantic layer with weight W to map

h′
i = Whi and define the loss as

L(H ′) =
n−2∑

i=1

max(0, c+ score(h′
i,h

′
n)

− score(h′
n−1,h

′
n))

(5)

where H ′ = {h′
1,h

′
2, . . . ,h

′
n} is the set of the mapped

hidden states, c is a constant and score(·, ·) computes the

similarity between its two inputs. In this work, we adopt the

cosine similarity function.

The above loss attempts to guarantee that within any

given training sequence, the last frame has a larger simi-

larity with the second to the last frame than all other previ-

ous frames. In general, this constraint is true in videos as

well as in our 4D case. In particular, for training sequences

where all the frames have the same label, this loss func-

tion differentiates the states at different input frames. At

the same time, the cross-entropy loss for action recognition

classifier tries to guarantee correct prediction on these dif-

ferentiated states. Our experiments suggest that this mecha-

nism leads to better action recognition performance for our

Action4DNet model.

3. Experimental results
In this section, we evaluate the proposed 4D approach for

action recognition and compare our approach against differ-

ent competing methods.

3.1. Ground truth experimentation setup

To evaluate the performance of our method, we collect

a 4D action recognition dataset. We set up three different

environments (Env1, Env2 and Evn3) with different num-

ber of Kinect V2 cameras to capture the RGBD images

and then we generate 4D volume representation of the dy-

namic scene. The three environments are located at differ-

ent rooms with different backgrounds. We label the videos

in a per-frame fashion: each video frame has an action la-

bel. We also evaluate all action recognition models using

the per-frame accuracy. The statistics of our dataset are

summarized in Table 1.

Envs # of cameras # of subjects # of volumes

Env1 4 15 90K

Env2 8 12 64K

Env3 7 9 34K

Table 1. Our dataset from three different environments.

The scene includes not only people but also objects such

as sofa, tables, chairs, boxes, drawers, cups, and books.

There are over 20 different subjects in the dataset. They

have different body shapes, gender and heights. The dataset

includes 16 actions in the everyday life: drinking, clap-

ping, reading book, calling, playing with phone, bending,

squatting, waving hands, sitting, pointing, lifting, opening

drawer, pull/pushing, eating, yawning, and kicking. Each

action can be done in a standing or a sitting pose. Here,

action “sitting” means sitting without doing anything.

We compare our proposed method against different base-

line methods. The baselines include:

• ShapeContext256 and ShapeContext512: 3D Shape

context is a 3D version of the shape context [3] de-

scriptor. The 3D shape context has the height axis and

the angle axis uniformly partitioned, and the radial axis

logarithmically partitioned. We test two versions of the

3D shape context: ShapeContext256 has 256 bins and

ShapeContext512 has 512 bins. We build a deep net-

work whose input is the 3D shape context descriptors.

The network uses an LSTM network to aggregate the

temporal information.

• Moment: Moment is another popular shape descriptor.

We use the raw moments up to order 4. Similar to the

above shape context approach, the moment descriptor

is fed into a CNN for action recognition.

• Skeletons: OpenPose [6] is one of the state-of-the-art

stick figure detectors on RGB images. We normalize

the positions of the joints of each subject using the

neck point and then concatenate the xy coordinates

into a feature vector. We train a deep network using

similar approach to the above shape context method.



• Color+Depth: In this method, we find the bounding

boxes of each person based on our tracking result. We

crop the color and depth images of each person in the

video from all the cameras. We train a deep neural

network using the cropped color and depth images and

their action labels. To be fair, we do not use motion in

all the methods in this paper.

• PointNet: PointNet [20] is one of state-of-the-art deep

learning methods for object recognition and semantic

segmentation on 3D point clouds. We extend the Point-

Net model to include an LSTM layer so that it can han-

dle sequential data for action recognition. The network

can be trained end-to-end using the point clouds from

multiple RGBD images.

• I3D and NL-I3D: Inflated 3D ConvNet [7] (I3D)

achieves the state-of-the-art action recognition on

RGB videos. We also compare with non-local I3D [27]

(NL-I3D), which introduces non-local operations for

better long-range dependencies modeling.

• SparseConvNet SparseConvNet [10] defines subman-

ifold convolution, which keeps track of “active” site to

reduce computational overhead. We train SparseCon-

vNet using the 3D volumes along with an LSTM head

to recognize actions in 3D streams.

All the models are implemented using PyTorch. For I3D

and NL-I3D, we use the pre-trained models on Kinetics

dataset [13] and fine-tune them on our dataset. All other

baselines and our proposed models are trained from scratch.

We use the same training, testing and validating splits when

evaluating different methods. To make the models agnostic

to the number of cameras, we train Skeleton, I3D, NL-I3D
on single camera frames. During testing, we aggregate the

predictions from different cameras to obtain the eventual ac-

tion recognition results. Color+Depth also depends on the

number of cameras. However, when trained on single cam-

era frames, its performance is much worse. In this work,

we only report its performance on test one and two (using

all four camera frames for training and testing) under envi-

ronment one.

In our experimentation, we extract the 4D volume repre-

sentation for each person based on our 4D people tracker.

Given each person’s location, we extract a volume centered

at that location. This volume is set large enough to cover a

person with different poses. In particular, we experiment

with different voxel sizes. Table 2 shows the results of

two models. Conv3D + ATT is the model in Figure 5 and

Conv3D is with similar architecture without the attention

branch. We have not applied the proposed adaptive convo-

lution layer or the discriminative loss yet. The results in

Table 2 shows that we can achieve better performance with

Figure 6. Kinect V2 skeleton estimation is prone to errors if there

is clutter in the scene. Row one: Depth images. Row two: Nor-

malized skeletons from Kinect V2.

smaller voxel size. In the following experiments, we will

use the 25mm voxels to evaluate the proposed models.

Model Voxel Size Volume Size Acc

Conv3D 50mm 31× 31× 43 71.1

Conv3D + ATT 50mm 31× 31× 43 74.8

Conv3D 25mm 63× 63× 85 80.5

Conv3D + ATT 25mm 63× 63× 85 82.5

Table 2. Accuracies (Acc) of two Conv3D models on similar vol-

ume coverages with different voxel sizes on the data of Env1.

Apart from the target subject, background clutter and

other subjects in the scene are also included in the cropped

volume as shown in Figure 4. Potential approaches, such

as semantic segmentation and 3D skeleton estimation, can

be used to separate a person from the clutter. However, the

results can be unreliable in a “cluttered” environment.

For instance, Figure 6 shows that the skeleton estima-

tion from Kinect V2 becomes increasingly unreliable as the

background clutter increases. When people interact with

large objects and their body parts are occluded by these ob-

jects, the skeleton estimation fails.

In this paper, we therefore do not depend on the semantic

segmentation and 3D skeleton estimation. Instead, we use

the full 4D volume data that contains every bit of informa-

tion for action recognition. In the following, we show the

experimental results on the ground truth data.

3.2. Ground truth experimentation

We conduct the following three tests on our dataset. (1)

Test one: we use 14 single-subject videos performed by dif-

ferent subjects from Env1. The training is on ten videos and

testing is on three videos. One video is used for validation.

It has a total of 68K frames in the training videos, 6K frames

in the validating videos and 10K in the testing videos. (2)

Test two: we take the trained models from test one and

evaluate them on 4 multiple-subject videos also collected

from Env1, which include 3, 3, 3, and 2 people respec-

tively. It has a total of 6K frames for all the multiple-subject

testing videos. (3) Test three: we also conduct a cross-
environment test to further study the robustness of differ-

ent approaches. We train all models on data from Env1
and Env2. We test all models on data collected from Env3,



which has some non-overlap subjects with Env1 and Env2

as well as single and multiple person videos. One video

from Env3 is used as validating video for model selection.

We report two accuracy numbers for each test. Acc is

stricter: we deem action recognition is correct if and only

if the action prediction result matches the ground truth la-

bel of the corresponding video frame. One issue about this

criterion is that at the action boundaries, accurate labeling

is hard. For transient actions, the small offset of labeling

may cause the mismatch between detection results and the

ground truth. To remedy this issue, we define another accu-

racy, revised accuracy (RAcc). For RAcc, an action classi-

fication is correct if and only if the predicted action label is

the same as the ground truth label of a frame within the win-

dow of plus/minus three relative to the current video frame.

Models
Person 1 Person 2 Person 3 Average

Acc RAcc Acc RAcc Acc RAcc Acc RAcc

ShpCtx256 56.9 63.1 51.5 56.5 55.7 61.6 54.7 60.5

ShpCtx512 55.2 60.5 47.6 53.1 56.8 62.6 53.4 58.9

Moments 37.4 44.9 44.9 54 38.4 47.1 40.1 48.6

Color+Depth 53.6 60.5 64.1 71.7 52.7 60.1 56.6 63.9

Skeleton 66.7 72.2 72.1 79.1 56.8 62.8 64.9 71.0

PointNet 58.9 63.7 76.5 79.1 57.9 63.8 58.7 63.5

SparseNet 69.5 76.1 71.9 79.9 69.7 76.4 70.3 77.4

I3D 77.5 84.6 78.8 87.8 74.2 82.4 76.7 84.8

NL- I3D 73.7 81.3 78.8 88.1 74.2 82.9 75.5 84.0

Action4DNet

(w/o ATT)
83.6 90.2 79.2 86.8 79.1 85.9 80.6 87.5

Action4DNet 84.0 89.6 84.7 91.9 83.6 90.0 84.1 90.4

Table 3. Evaluation of the proposed models and several baselines

on test one. We show percentages of both the accuracies (Acc) and

the revised accuracies (RAcc) of all the evaluated models.

Table 3 shows the accuracies of different competing

methods in ground truth test one. In this test, our proposed

Action4DNet trained with adaptive convolutional layer and

the proposed discriminative loss achieves the highest av-

erage revised accuracy (RAcc) 90.0%. We also train the

model without using the attention model, which obtains

worse performance than Action4DNet. However, it still

performs better than all baselines. Our method’s accuracy

improves by more than 30% over the competing methods

such as ShapeContext, Moment, Color+Depth, Skeleton

and PointNet and by about 6% over recent deep learning

based approaches on RGB videos including I3D, NL-I3D

and SparseNet. We also achieve the highest accuracies in

each individual test.

These results are not a surprise. The handcrafted features

such as shape context and moments are not as strong as the

learned features from deep learning especially when there

is strong background clutter. The PointNet gives low accu-

racies in this experiment. This is likely due to the strong

clutter and because PointNet has to sample the point clouds

to fit into the GPU memory. The Color+Depth and Skele-

ton approaches perform better than other handcrafted fea-

ture methods, but they give much worse results than our

proposed method. I3D and NL-I3D show better perfor-

mance over other approaches. However, both methods are

also dependent on the camera views: if the camera settings

are different, we have to retrain the model. In contrast,

our proposed method can be used in different camera set-

tings without retraining. The input to SparseNet is view-

independent as well. However, it shows worse performance

the our model. The following test two and test three con-

firms the generability of our approach.

Models Acc RAcc

ShapeContxt 37.5 43.6

ShapeContxt16 34.2 39.1

Moments 36.2 44.5

Color+Depth 46.1 56.6

Skeleton 53.8 62.0

PointNet 58.9 64.6

SparseNet 60.4 68.3

I3D 58.1 66.7

NL-I3D 56.4 64.2

Action4DNet (w/o ATT) 79.9 87.1

Action4DNet 86.3 93.3

Table 4. Evaluation of the proposed models and several baselines

in ground truth test two, which involves multiple people.

We use the same model trained in test one to evaluate

all the multiple people videos in test two. As shown in Ta-

ble 4, our method still achieves the highest accuracy among

all the methods. PointNet and SparseNet show less perfor-

mance degradations due to their color agnostic inputs. All

other competing approaches show worse accuracies due to

multiple people mutual occlusions and background clutter.

As a matter of fact, our Action4DNet even shows better per-

formance than in test one. This could be attributed to the

short duration and thus less variation of actions in each of

the testing video in test two.

Models Acc RAcc

Skeleton 45.0 49.4

PointNet 49.4 53.8

SparseNet 68.2 73.3

I3D 58.1 65.3

NL-I3D 61.3 68.3

Action4DNet (w/o ATT) 74.8 80.5

Action4DNet 81.4 87.0

Table 5. Results on cross-environment testing. We train all the

models on data from Env1 and Env2 and test them on Env3.

Due to space limit, we only include the performance of

deep learning approaches for test three. The results are

shown in Table 5. Again, the proposed model shows bet-
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Figure 7. Confusion matrix for ground truth test of our Action4DNet model.

ter performance against all baselines. In addition, the ac-

curacies of our model are comparable with our results in

Table 3, which is tested in the same environment. This sug-

gests that our approach is general and robust against back-

ground clutters. Other approaches, including I3D and NL-

I3D are severely impacted by the different backgrounds and

lightings in different environments.

Table 3, Table 4 and Table 5 show that our proposed

method consistently gives much better results than all the

competing methods. The high accuracy also benefits from

our reliable 4D people tracker, which obtains 100% track-

ing rate for all the testing and training videos. Our method

is also fast, with a single GTX1080 TI, our method is able

to track 10 people and infer their actions at 15 frames per

second (FPS) on volumes with 50mm × 50mm × 50mm
voxel size. On the 25mm × 25mm × 25mm voxels, it is

possible to recognize actions at 25 FPS on a single person.

Figure 7 shows the confusion matrices of our Ac-

tion4DNet on the three different tests. It is interesting to see

that there are many missing detections in test two and test
three. Especially, for the bend down action, both test two

and test three have over 40% missing recognitions. This

is potentially due to the large variations of this action and

the inconsistent labeling standards used by different ground

truth labelers. Meanwhile, our method also confuses some

actions as seen in Figure 7. This is mostly due to the noisy

data from the Kinect sensor. Using better depth cameras and

better time synchronization, our action recognition results

can be further improved. Moreover, we can further include

other voxel attributes such as color and use multi-resolution

volume data to achieve more robust results.

3.3. Ablation study

We evaluate the impact of the proposed adaptive convo-

lution layer and the discriminative temporal feature learn-

ing on action recognition performance. Table 6 lists the re-

sults. We show the accuracies of Action4DNet on test one,

Models Test one Test two Test three

Action4DNet-A-D 82.5 82.5 76.4

Action4DNet-D 81.6 85.4 80.6

Action4DNet-A 82.6 85.3 81.3

Action4DNet 84.1 86.3 81.4

Table 6. Ablation study on the proposed adaptive convolution and

the discriminative loss. We use “-A” and “-D” to represent the

model variations without adaptive convolution and without dis-

criminative loss respectively.

test two and test three respectively. The proposed adap-

tive convolution layer introduces more parameters. Thus, it

may not help the model without the discriminative temporal

feature learning as shown in test one. However, the results

in test two and test three suggest that the adaptive convo-

lution layer indeed improves the generability of the model

on different settings. The discriminative loss improves the

performance over baseline Action4DNet-A-D in all three

tests. Overall, the results indicate that the two proposed

mechanisms are effective in learning better action recogni-

tion models from 4D volumes.

4. Conclusion

We propose a novel online 4D action recognition

method, the Action4DNet, which is able to generate 4D vol-

umes of the environment, track each person in the volume

and infer the actions of each subject. Our method is able

to handle multiple people and strong clutter. In particular,

the proposed adaptive convolution layer and the discrimina-

tive temporal feature learning objective further improve the

performance of our model. Our experimental results under

different settings confirm that our method gives better per-

formance over different competing methods. The proposed

method can be deployed to enable different applications to

enhance how people interact with the environment.
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