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Abstract

We propose a novel linearly augmented tree method for
efficient scale and rotation invariant object matching. The
proposed method enforces pairwise matching consistency
defined on trees, and high-order constraints on all the sites
of a template. The pairwise constraints admit arbitrary
metrics while the high-order constraints use L1 norms and
therefore can be linearized. Such a linearly augmented tree
formulation introduces hyperedges and loops into the ba-
sic tree structure, but different from a general loopy graph,
its special structure allows us to relax and decompose the
optimization into a sequence of tree matching problems ef-
ficiently solvable by dynamic programming. The proposed
method also works on continuous scale and rotation param-
eters; we can match with a scale up to any large number
with the same efficiency. Our experiments on ground truth
data and a variety of real images and videos show that the
proposed method is efficient, accurate and reliable.

1. Introduction
Matching objects in cluttered images is a challenging

task because the target object may appear rotated, scaled
and locally deformed. To handle shape variation, object
matching is naturally formulated as a graph matching prob-
lem, in which the object is divided into parts represented by
graph nodes and the part coupling is represented by graph
edges. Matching is to assign the target candidates to graph
nodes so that the assignment has low cost and it is consistent
with the constraints defined on the graph edges.

We propose a novel formulation to tackle scale and ro-
tation invariant object matching. In our model, the ob-
ject parts follow basic tree relations and we also introduce
global constraints that couple all the tree nodes. These
global constraints can be linearized and we call this class
of constraints linearly augmented tree (LAT) constraints.

A large class of matching techniques are based on dis-
crete energy minimization. If the energy function is sub-
modular then it can be efficiently minimized using max-
flow algorithms [5, 3]. Alternatively, if the underlying
graph is a tree then dynamic programming is used [2].

For general loopy graphs, popular approximation tech-
niques include loopy Belief Propagation [6], convergent
Tree Reweighted Message Passing [12], integer quadratic
programming [8], primal-dual techniques [11] and dual de-
composition [18, 17]. Unfortunately, these discrete energy
minimization techniques do not generalize easily to handle
a mixture of discrete and continuous variables in the LAT
constraints, e.g., the scale and rotation parameters are con-
tinuous. A typical workaround is to quantize these contin-
uous variables. Our optimization algorithm avoids such an
ad hoc quantization step by using a decomposition method
that splits the relaxed problem into a master and slave opti-
mization. The master problem optimizes over the set of con-
tinuous variables, and the slave problem performs efficient
combinatorial optimization over the discrete variables in or-
der to generate proposals for the master problem. Further-
more, these cited works only model low-order constraints
(typically up to two) and in contrast, we use LAT to model
high-order constraints that couple all the model points in the
matching.

Other matching techniques do not use an explicit graph
template. For example, the Hough Transform [4] is a robust
and efficient voting method but it requires careful quanti-
zation of the parameter space. Techniques such as Softas-
sign [7], spectral graph methods [14] and RANSAC [16]
do not need to quantize the global transformation param-
eters, but their matching performance deteriorates rapidly
when clutter increases and features weaken. In our experi-
ments, we show that matching using LAT constraints is reli-
able even when the scene is highly cluttered and the features
are not distinctive.

Two closely related works are [13, 19]. These meth-
ods have different drawbacks, namely, restricting the pair-
wise cost to the L1 norm [13], quantizing the scale param-
eter [13] and the tendency to match small structures when
the features are weak [19]. The lower convex hull method
these methods rely on is unsuitable for very weak feature
matching. Our new formulation removes these drawbacks.

The contributions of this paper are twofold:

New Formulation for Rotation and Scale Invariance
The proposed linear augmented tree model (LAT)
allows arbitrary metrics for the pairwise costs on trees
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Figure 1. Matching a template to a target object using a linearly
augmented tree (LAT) model. Our method allows arbitrary pair-
wise constraints defined on the basic tree edges and linear high-
order constraints that couple all the model nodes.

and it also allows powerful high-order constraints
that couple all the nodes. It works on continuous
scale and rotation parameters. It also allows virtually
unbounded scaling so that users do not have to guess
the scale range.

Efficient Matching Algorithm Our algorithm efficiently
solves the matching with LAT constraints by relaxing
the problem and decomposing it into a sequence of ef-
ficient dynamic programming problems. Furthermore,
the relaxed problem can be solved optimally.

2. Scale and Rotation Invariant Matching
We formulate scale and rotation invariant matching us-

ing linearly augmented tree constraints (Fig. 1). Given a
set of template points I and target candidate points J , the
matching problem is formulated to search for three items,
namely the mapping f : I → J , rotation θ0 and scale s0 to
minimize the objective function

c(f, θ0, s0) = cu(f) + ct(f, θ0, s0) + cg(f, θ0, s0). (1)

The unary cost term

cu(f) =
X

i∈I
c(i, fi) (2)

is the sum of the matching cost c(i, fi) between model point
i and its target point fi. The scale and rotation term,

ct(f, θ0, s0) = μ
X

(p,q)∈N

d(θ((p, q), (fp, fq)), θ0)

+ γ
X

(p,q)∈N

|s((p, q), (fp, fq)) − s0|,
(3)

encourages pairs of model points to have similar rotation
angle θ0 and scale factor s0 in the matching. N , the set
of neighboring model points, corresponds to the edges of
a tree. θ((p, q), (fp, fq)) is the rotation angle from vector
−→pq to

−−→
fpfq. s((p, q), (fp, fq)) is the scaling factor between

the two vectors. Fig.1 illustrates the matching of a pair of
model points. In Eq.(3), d(.) computes the difference of
two angles; coefficients μ and γ control the weight between
terms. The global cost term

cg(f, θ0, s0) = g(s0, θ0, h(1), . . . , h(n), h(f1), . . . , h(fn))

introduces global constraint across all the model points
(|I| = n), and h(.) is a function that maps model points
and target points to some quantities, e.g., the coordinates.
We require that g(.) contain only the L1 norm and linear
operations on quantities of the model and target points. As
shown later, the scale-rotation term ct and the global term
cg can be linearized and form hyperedges on the basic tree
nodes. The formulation therefore follows a LAT model.

Even though the basic structure of a LAT model is a tree,
the linear high-order constraints make the optimization dif-
ficult to solve. Naive discretization is infeasible if the scale
upper bound is unknown; quantizing rotation angles and
scales would result in too many discrete cases. We propose
to encode the problem as a mixed integer linear program
and show how to exploit its special LAT structure to design
an efficient algorithm.

2.1. Linearization
We describe how to encode the minimization of

c(f, θ0, s0) (Eq. (1)) as a mixed integer linear program. As-
sume that there are n model points and m target points. Let
[[ π ]] = 1 if the predicate π holds and 0 otherwise. We in-
troduce an n × m matrix X and m × m matrix Yp,q whose
elements

xi,j = [[fi = j]] and yp,q
i,j = [[fp = i ∧ fq = j]].

The matrix X indicates the matching of model points to tar-
get points, and the matrix Yp,q indicates the matching of a
model point pair (p, q) ∈ N to target point pairs. We en-
force X to be an assignment matrix with the unity constraint
X1m = 1n, where 1m is an all one element vector of length
m. The X matrix and Y matrices are related by

XT ep = Yp,q1m, and XT eq = Y T
p,q1m,

where the n-vector ep = [0, 0, . . . , 1, 0, . . . , 0]T has a single
unity element at p.

The unary cost term defined in Eq.(2) can be repre-
sented as tr(CT X) where C = [c(i, j)] is the matching cost
matrix whose element c(i, j) is defined in Eq.(2).

The rotation term: For a model point pair (p, q) ∈ N ,
we assume p matches target point i and q matches j. Let the
rotation angle from vector −→pq to

−→
ij be θp,q

i,j and the m × m

rotation angle matrix Θp,q = [θp,q
i,j ]. If the target vector

−→
ij

degenerates to a single point then θp,q
i,j is assigned a random

number in [0, 2π]. The rotation for the model point pair
(p, q) can be represented as tr(Y T

p,qΘp,q). We require that all
the model point pairs share similar rotation in the matching
so that the object spatial structure is maintained. To this end,
we may minimize

∑
(p,q)∈N |tr(Y T

p,qΘp,q)−θ0|, where θ0 is
the overall (unknown) rotation angle, but this method does
not work at the rotation boundaries. To avoid this difficulty,
we split the rotation term into cos and sin terms:∑
(p,q)∈N

{|tr(Y T
p,q cos(Θp,q))−u0|+|tr(Y T

p,q sin(Θp,q))−v0|}
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Figure 2. LAT model and trellises. Thick lines indicate the paths.

where u0 and v0 correspond to the cos and sin of the un-
known rotation angle θ0; cos(.) and sin(.) apply to each
element of matrix Θp,q . The absolute value terms are con-
verted into linear functions by using a standard auxiliary
variable trick [10]. The complete linearization is shown in
Eq.(4).

The scaling term: The spatial consistency constraint
further enforces that the line segments between neighbor-
ing model points should scale uniformly. Similar to the ro-
tation matrix Θp,q , we define an m×m scaling matrix Sp,q

for each pair (p, q) ∈ N . The scaling for the model point
pair (p, q) is therefore tr(Y T

p,qSp,q). To enforce the scaling
consistency, we minimize∑

(p,q)∈N
|tr(Y T

p,qSp,q) − s0|,

where s0 is the global scaling factor. We can linearize this
term with auxiliary variable tricks similar to the rotation
term.

The global constraint: Term cg in Eq.(1) is composed
of L1 norms and linear functions of the quantities attached
to model and target points. cg may have θ0 and s0 as pa-
rameters. It can be linearized: each |v| term in cg turns
into the summation of two non-negative auxiliary variables
in the objective and their difference is set to equal v in the
constraints. As shown in Eq.(4), cg is transformed to go in
the objective and gc in the constraints.

We now obtain a mixed integer linear formulation of the
nonlinear optimization in Eq.(1).

max{−tr(CT X) −
∑

(p,q)∈N [μ(u+
p,q + u−

p,q

+v+
p,q + v−p,q) + γ(s+

p,q + s−p,q)] − go(w)} (4)

Subject to:

tr(Y T
p,q cos(Θp,q)) − u0 − u+

p,q + u−
p,q = 0,

tr(Y T
p,q sin(Θp,q)) − v0 − v+

p,q + v−p,q = 0,

tr(Y T
p,qSp,q) − s0 − s+

p,q + s−p,q = 0,

gc(X, w) = 0,

XT ep = Yp,q1m, XT eq = Y T
p,q1m, X1m = 1n,

0 ≤ u+
p,q, u

−
p,q , v

+
p,q, v

−
p,q , s

+
p,q, s

−
p,q, w ≤ M,

a ≤ u0 ≤ b, c ≤ v0 ≤ d, ε ≤ s0 ≤ L, u0 ± v0 = ±1

where X and Y are binary matrices. go is a linear function
induced by global constraints cg. By merging its X terms
to the first cost term in the objective, we denote go as a func-
tion of non-negative auxiliary variables w. gc corresponds
to the L1 norm terms in cg.

In Eq.(4), the original minimization is changed to maxi-
mization of the negative. An extra constraint |u0| + |v0| =
1 is included to approximate the orthonormal constraint
u2

0 + v2
0 = 1. The bounds [a, b] and [c, d] are determined

by the quadrant of the approximation line. For instance, if
u0 + v0 = 1, we have a = 0, b = 1 and c = 0, d = 1. We
find the optimum among four quadrants. This constraint
is optional; when included it is able to improve the qual-
ity of the relaxation. We also include an upper bound M
for the auxiliary variables; M is a large number to avoid
the unbounded solution. The scale is upper bounded by
L and lower bounded by a small number ε. In this paper,
M = L = 1000, and ε = 0.001.

It helps to visualize the mixed integer linear program us-
ing coupled trellises as illustrated in Fig.2. By expanding
the augmented tree nodes, we obtain a set of coupled trel-
lises. Each trellis node corresponds to an X variable, and
the edges between the candidate nodes of two neighboring
model points correspond to a Y matrix. The optimization
can thus be treated as searching for the optimal “paths”
starting from a tree root node candidate and ending at a can-
didate of each tree leaf node. If the paths pass a node, the
corresponding X variable is 1 and otherwise 0. If the paths
pass an edge, the corresponding Y variable is 1 and other-
wise 0. The cost of the feasible paths is the summation of
the node cost, the scale-rotation cost and the global cost in-
duced by cg. Due to the global constraints, searching for
the optimal paths in the trellises is a hard problem.

The optimization in Eq.(4) can be relaxed into linear
programs and solved via the Simplex Method. However,
when the target point number approaches thousands or mil-
lions, solving the large scale optimization becomes infeasi-
ble. Fortunately, with the LAT constraints, it can be decom-
posed into a sequence of efficient dynamic programming
problems.

2.2. Decomposition into Dynamic Programming

It is the scale, rotation and global constraints, the boxed
constraints in Eq.(4), that complicate the optimization.
Without them, we can simply select the best match for each
model point to optimize the objective. Another observation
is that, without the “complex” constraints, the problem turns
into an optimization on a tree. The complex constraints in-
troduce links (hyperedges) among all the tree nodes. If we
find feasible solutions on the tree, we may use their linear
combinations to satisfy the complex constraints and to op-
timize the objective. The original large scale problem can
therefore be decomposed.

We use Dantzig-Wolfe decomposition [20] to break large
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linear programs into small ones. However, a naive de-
composition slows down the optimization and increases the
memory usage. We use the special LAT structure and con-
vert our problem into a sequence of efficient dynamic pro-
gramming on trellises.

We rewrite Eq.(4) in a compact format:

max
{
cT x : Ax = r, Bx = e

}
. (5)

Abusing the notation, we use the vector x to indicate the
variables in Eq.(4), i.e., x includes X , Y , u0, v0, s0 and the
auxiliary variables. We use vector c to denote the objective
coefficients in Eq.(4). The complex constraints (boxed) are
denoted as Ax = r and other constraints as Bx = e.

Initialization: Removing the complex constraints Ax =
r, we obtain a linear program LPs. We select the lowest cost
target point for each model point to maximize LPs. The
auxiliary variables u+

p,q, u
−
p,q, v

+
p,q , v

−
p,q, s

+
p,q, s

−
p,q and w are

bounded in LPs. Since their coefficients are negative in the
objective function, they all should take their lower bounds.
We determine the values of s0, u0 and v0 using the same
method.

From the initial solution for LPs, we can always reset
u+

p,q, u
−
p,q , v

+
p,q, v

−
p,q , s

+
p,q, s

−
p,q and w to obtain x1 and x2 so

that αT
i x1 = ri + 1 and αT

i x2 = ri − 1, where αi is the
coefficient vector corresponding to the ith row of A and ri

is the ith element of r. 0.5x1 + 0.5x2 is feasible to both
simple and complex constraints. We use x1 and x2 to serve
as the first two proposals.

Updating tree trellis for new proposals: The goal is to
find new proposals satisfying simple constraints Bx = e so
that we can combine these proposals to optimize the objec-
tive and satisfy the complex constraints Ax = r. Assume
that we already have k − 1 proposals and we introduce the
kth proposal xk so that

[Fk]: max
λ1,...,λk≥0

(

k
X

j=1

λjc
T xj :

k
X

j=1

λjα
T
i xj = ri,

k
X

j=1

λj = 1

)

,

(6)
where λ is the weight vector for the proposals. For the
previous k − 1 known proposals, we price out the con-
straints of F(k−1) with shadow prices, which equal the op-
timal dual variable values. We denote the ith constraint’s
shadow price as di and the unit sum constraint’s shadow
price as δ. Based on the Simplex Method, by introduc-
ing the new proposal, the maximal gain of the objective is
λk(cT xk −

∑
i αT

i dixk − δ), recalling that shadow price
is the change of the objective per unit change of the right
hand side (the constant part) of a constraint. To improve
the objective, the gain has to be greater than 0. Using
Dantzig-Wolfe decomposition [20], instead of randomly
searching for a new proposal, we choose the xk that maxi-
mizes the gain: stripping away the λk and δ, we maximize
ĉ(x) = (cT −

∑
i αT

i di)x, i.e.,

xk = arg max
x

{ĉ(x) : Bx = e} , (7)

where the set of constraints includes the tree constraints and
other bound constraints.

Using the LAT structure, we solve Eq.(7) by dynamic
programming. Since the constraint matrix B excluding the
columns and rows for variables other than X and Y is to-
tally unimodular, and X , Y and other variables are sepa-
rable, we always have integer solutions for X and Y , and
the optimization is equivalent to finding the longest paths
on trellises expanded from the tree defined by N . We first
update the edge weight based on the Y variable coefficients
in ĉ(x) (all X variables have been substituted by Y vari-
ables) and then we use dynamic programming to implicitly
enumerate all the feasible paths. The auxiliary variables and
s0, u0, v0 in Eq.(7) take their lower bounds or upper bounds
depending on the signs of their coefficients in ĉ(x).

Termination condition and looping: We check the op-
timal objective ĉ(x∗) of the dynamic programming and pro-
ceed as follows

ĉ(x∗)

{
> δ add x∗ as a proposal
≤ δ terminate

(8)

Therefore, if the gain ĉ(x) is greater than δ, we introduce a
new proposal, update the trellises and solve a new dynamic
program; otherwise, the iteration terminates. The iterative
process is finite and terminates with the optimum solution
for the relaxed problem [20]. The optimal solution is a lin-
ear combination of the proposals.

Obtaining integral solution: The optimal solution for
the relaxed solution is fractional and we convert it into an
integral solution by solving a mixed-integer program. We
solve the mixed-integer program that keeps only the non-
zero value target points. We observe that in practice, there
are very few non-zero assignment variables in the relaxed
solution; therefore, the complexity of this stage is negligi-
ble. This scheme ensures that if the optimal target point
for each model point is non-zero in the relaxation, then the
global optimum is achieved. The complete procedure is
summarized in Algorithm 1.

Algorithm 1 Scale and rotation invariant matching on lin-
early augmented tree (LAT) (Eq.4)

Initialize Get feasible solutions x1 and x2 and set k = 2.
repeat

Solve Fk (Eq.6) and k := k + 1
Update trellis weight (Eq.7) and use dynamic program-
ming to solve for xk.

until convergence (Eq.8).
Obtain integral solution.

Toy Example: We match a 3-point template in red to
the blue target points (Fig.5). The template’s basic graph
is a tree with N = {(1, 2), (1, 3)}. Model point 1 matches
target point 1 with cost 10, and the other points with cost 9.
Model points 2 and 3 match every target point with cost 10.

2476



S2 S1 S3

T1

T2

T3

T4 (a) S2             S1             S3

T1

T2

T3

T4 (b)
Figure 3. The trellises for tree matching in the first (a) and last (b)
stage of iteration. S1, S2 and S3 denote the 3 model points and
T1, T2, T3 and T4 denote the 4 target candidates. The warm color
indicates high value and cool color indicates low value. The tree
optimization finds the matching such that the total edge value is
the highest. The thick edges indicate the optimal matching.

Proposals

 

 

5 10 15 20 25 30 35

Site 1
Site 2
Site 3

cos
sin

scale
0

2

4

(a)

10 20 30

0

5000

10000

15000

# of iterations

V
al

ue
s

Tree matching
Delta
LAT objective

(b)
Figure 4. (a): Tree proposals. (b): Convergence of the example.

In this example, we ignore the global term cg. How-
ever, we still include the hyperedge term that involves scale
and rotation consistency; it is non-trivial to solve. We con-
struct the proposed model and solve the optimization using
Algorithm 1. The solution process involves a sequence of
trellis updates. In the following, we show one of the 4 lin-
ear programs that achieve the global optimum. Initially, the
trellises are as shown in Fig.3(a). The color of the edges
illustrates their weight. The assignment on trees can be effi-
ciently computed by dynamic programming: the result is
1 → 2, 2 → 1, 3 → 1. s0, u0, v0 and auxiliary vari-
ables take their lower or upper bounds based on the signs
of their objective coefficients. We update the trellises us-
ing the proposed scheme so that a new tree solution linearly
combined with previous proposals improves the objective.
The trellises evolve and at the last stage they are as shown in
Fig.3(b). The tree solution is 1 → 2, 2 → 1, 3 → 3, which
is the optimum. Fig.4(a) shows the assignment and rotation-
scale parameters in different proposals. Fig.5 shows how
the floating-point assignments for model points 1, 2, 3 and
the values for the objective, ĉ(x) and δ change in the itera-
tion. Fig.4(b) shows the convergence process: the dynamic
programming solution approaches δ and the gap scaled by
λ equals the improvement of the objective. The proposed
method achieves the integral solution; it is the global opti-
mum.

Complexity: The complexity of the proposed method
depends on the tree structure matching and the linear pro-
gramming for fusing the proposals. A standard dynamic
programming solution for tree matching is O(nm2) where
n is the number of model points and m is the number of
target points. If we can embed the target points on grids,
the complexity can be reduced to O(nm). The complex-
ity of Fk is independent of the n and m. It is mostly de-
termined by the number of complex constraints l and the
number of proposals k. With the Simplex Method, the av-
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Figure 6. (a): The number of iterations is determined by the num-
ber of complex constraints but is independent of the number of
target points. (b): The proposed method is more efficient than the
Simplex Method.

erage complexity is roughly l log(k) [10]. Fig.6 illustrates
the complexity of the proposed method based on the statis-
tics of a large number of synthetic problems. The proposed
method is much more efficient than a direct simplex solu-
tion. By embedding target points on grids, the method is
able to solve problems with millions of target points.

As a further remark, our approach is different from the
dual decomposition [18]. Instead of decomposing the ob-
jective to obtain a set of easy problems we decompose the
constraints and optimize on a tree.

3. Benchmarking Using Ground Truth Data
We evaluate the performance of the proposed method on

synthetic point datasets, which have been widely used in
testing matching performance. There are two kinds of test
patterns: one is the fish and Chinese character in [7, 9], the
second test pattern is random dots. In the experiment, we
randomly select 10 model points from the template image to
form a template graph. The matching is a challenging task
even for clean target images since other points act as clutter
points and there are 10 times more clutter points than model
points. The target patterns of the first class are smoothly
deformed from their templates, while for the second class,
the target points are randomly perturbed in 0-20 pixels to
simulate deformation. Clutter points are also included in the
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Figure 7. Benchmarking using ground truth data. Row one shows
the average matching errors; other rows show the error histograms
in different test cases. Good performance is indicated by high
values in the lower error ranges and a short tail in the high error
ranges.

target patterns. We randomly rotate and scale the patterns
to form the final target images. For each pair of template
and target candidate points, the matching cost is the lowest
chi-square distance between their shape contexts [9] over a
set of different scales and rotations.

We compare our method with a tensor method [14],
RANSAC [16], linear matching [13] and local affine invari-
ant matching [19]. These matching methods represent the
state of the art. A dynamic programming (DP) approach is
also compared: by quantizing the scale and rotation angle,
each discrete case contains only unary and pairwise con-
straints and can be solved by dynamic programming. This
DP approach is in fact a variant of the Hough Transform.
The quantization intervals for the scale and rotation are 0.1
and 5 degrees respectively. The DP method uses the same
set of parameters as the proposed method in the objective.
In this experiment, the proposed method sets cg to 0.

We randomly generate 500 matching problems for each
test case and we use the error histograms and aver-
age matching errors to quantify the performance of each
method. The error histograms record the frequency of
matching errors in different ranges. As shown in Fig.7, the
proposed method has the lowest average matching errors
in all the tests. The error histograms indicate that it also
yields matching results in lower error ranges than all the

(a) (b) (c)

(d) (e) (f)

This paper DP RANSAC Tensor Linear Affine
90% 63% 48% 5% 88% 8%

Figure 8. Matching 429-frame cup sequence. The sample result
shows how the proposed method (a) improves the result over DP
(b), RANSAC (c), tensor (d), linear [13] (e) and local affine [19]
(f) method. The table summarizes the detection rates for the video.

competing methods. Interestingly, our method outperforms
the discretized “exhaustive” search method (DP) under the
same parameter setting: search in continuous domain helps.

4. Evaluations on Real Images and Videos
We evaluate the proposed method on a variety of videos

on different features including SIFT [1], image patches, and
unreliable regions. With a randomly selected template in
each experiment, we use the proposed method to match the
target object in cluttered videos. We also compare with the
five competing methods in the synthetic data experiments.

Matching SIFT: We first match SIFT features and test
whether the proposed method still has an advantage over
other competing methods. In this experiment, the proposed
method uses a global affine constraint, i.e., the target of the
root model point is constrained to be close to a point that
is the linear combination of all the other target points. The
coefficients are determined from the layout of the model
points. We select the top five model points with the low-
est best and second-best matching candidate cost ratio [1]
to form the model graph. To simulate hard situations, for
each model point, we corrupt the best matching candidate
cost and set it equal to the second best matching cost. Fig.8
shows the comparison results for the 429-frame cup se-
quence. Due to the complexity of the tensor method [14]
we have to use a higher threshold to reduce the number
of SIFT features. We use visual inspection to quantify the
detection rate: if all the model points match correctly, we
have a correct detection. In this experiment, the proposed
method achieves a 90% detection rate, which is the highest.
It also has a complexity similar to the efficient linear [13]
and affine [19] methods.

Matching image patches: We test the reliability of the
algorithm when using non-distinctive features. We use edge
pixels and image patches for matching. The target candi-
date points include all the edge pixels in the target image.
The local matching cost is the lowest cost of image patch
matching at different rotations; because the image patch is
small it is roughly scale invariant. We ran the algorithm on a
200-frame sequence of a person running (Fig. 9). With such
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Figure 9. Matching using edge pixels on a 200-frame sequence of
a person running. The detection rate is 97%. Average running time
is 0.7s per frame.
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This paper DP RANSAC Tensor Linear Affine
91% 73% 43% 11% 74% 14%

Figure 10. Matching using superpixels on the 264-frame girl
sequence. The girl sequence has strong background clutter and
unstable superpixels. (a) is the template. The sample result of
(b) the proposed method is superior to (c) DP, (d) RANSAC, (e)
tensor [14], (f) linear [13] and (g) local affine [19] method. The
table summarizes the detection rates in the whole sequence.

rough features, the proposed method still reliably matches
the target with a 97% detection rate. It is also efficient, the
typical running time of the optimization is 0.7s per frame.

Matching unreliable regions: We demonstrate the abil-
ity of LAT method on using cheap features to match un-
reliable regions. This setting enables fast object matching.
However, drastic region variation, non-distinctive features
and strong clutter also pose a great challenge. Previous
techniques [21, 22] rely on strong features that are expen-
sive to compute or hierarchical region matching that has
high complexity.

We over-segment images into superpixels using [15].
The model points and target points are superpixel weight
centers in the template and target images. We use two weak
features: the average chromaticity of each superpixel and a
shape feature defined as the ratio between the two eigenval-
ues of the xy coordinate covariance matrix.

We use a linear global constraint cg to enforce the total
area consistency. Even though superpixels may change size
randomly, the overall object size equals the template size
scaled by a factor. It is defined as cg = |tr(RT X) − s2

0ta|
where R is the target area matrix and ta is the template area.
cg can be linearized by letting gc = tr(RT X)−s2

0ta−w++
w− and go = φ(w+ + w−) in Eq.(4), where φ is a constant
coefficient. s2

0 can be further changed to s0 and we squared
the scaling matrices S in Eq.(4).

We compare our method with other five competing meth-
ods on the challenging girl (Fig. 10) and mouse (Fig. 11)
sequences. Results for the girl and mouse sequences are
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Figure 11. Matching using superpixels on the 551-frame mouse
sequence. The superpixels are unstable and change drastically
from frame to frame due to the subtle color difference on the ob-
ject and shading changes when the object rotates. The color of
the mouse is also similar to the superpixels on the wall. (a) is the
template. In the target frame, (b) the proposed method succeeds,
but competing methods (c) DP, (d) RANSAC, (e) tensor [14], (f)
linear matching [13], and (g) local affine matching [19] fail. The
table summarizes the detection rates in the video.

Mouse Girl Dance-I Gym Dance-II Skate
Num. Frames 551 264 713 386 792 472

Rate 90% 91% 98% 90% 94% 91%
Avg. Time (s) 0.78 0.42 0.03 0.02 0.07 0.05

Figure 13. The average running time for optimization in one frame
is measured on a 2.8GHZ machine.

shown in Fig. 10 and Fig. 11 respectively.
We also apply the proposed method on four other

challenging video sequences downloaded from YouTube
(Fig. 12). The detection rates and average running time
of the proposed method when applied to the six different
videos are listed in Fig.13. The detection rate is deter-
mined by visual inspection. Due to unreliable segmentation,
we check the global detection result, i.e., we transform the
model points using an affine transformation that is based on
the region center correspondence and examine whether the
matching is correct. The proposed method robustly matches
the target in these sequences with a detection rate from 90%
to 98%. It is also efficient: optimization in a frame takes
less than a second for a target image with hundreds of su-
perpixels. The proposed method achieves significantly bet-
ter results than all the competing methods. It has similar
complexity to the linear, affine and RANSAC methods and
many times faster than the discretized parameter DP and
tensor methods.

5. Conclusion
We propose a novel formulation for scale and rotation

invariant matching using Linearly Augmented Tree (LAT)
constraints. Due to the LAT’s special structure, we can
solve the relaxed matching problem efficiently with a se-
quence of dynamic programming. Our experimental results
on ground truth data and real images demonstrate that the
proposed method is more reliable than previous methods.
The experiments confirm that our method maintains high
performance even on very weak features such as unreli-
able regions. We believe our method is generic and can be
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Figure 12. Results of the proposed method on real world data. The first column shows the randomly selected templates. Row 1: mouse
(551 frames) has drastic superpixel changes and foreground is similar to the background. Row 2: girl (264 frames) has strong clutter.
Row 3-6: dance-I (713 frames), gym (386 frames), dance-II (792 frames), and skate (472 frames) have complex articulated
movement, large deformation and self-occlusion. Dance-II also includes a few human subjects with similar shapes and colors that form
challenging structured clutter.

adapted to solve problems in other domains including pose
estimation and object tracking.
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