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Abstract

Images of an object undergoing ego- or camera- motion

often appear to be scaled, rotated, and deformed versions

of each other. To detect and match such distorted patterns

to a single sample view of the object requires solving a hard

computational problem that has eluded most object match-

ing methods. We propose a linear formulation that simulta-

neously finds feature point correspondences and global ge-

ometrical transformations in a constrained solution space.

Further reducing the search space based on the lower con-

vex hull property of the formulation, our method scales well

with the number of candidate features. Our results on a va-

riety of images and videos demonstrate that our method is

accurate, efficient, and robust over local deformation, oc-

clusion, clutter, and large geometrical transformations.

1. Introduction

Images of a bee flapping its wings and moving around
a daisy appear to be related by global translation, rotation,
scaling, and local deformation. Our goal is to detect and
match the 2D pattern of the object with a template built from
a single sample image (Fig. 1).
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Figure 1. Our goal is to find the correspondence between the model

image of a deformable object and the target image of the same

object with unknown scaling, rotation, and local deformation.

The basic idea in pattern matching is that distinctive fea-
ture points should maintain both local appearances and rel-
ative spatial relationships. The spatial consistency has to be
enforced if we need point-to-point correspondences rather
than the mere pattern detection [1]. Geometrical transfor-
mations such as scaling and rotation introduce such a com-
putational complexity that few methods have been able to
deliver fast, accurate, and robust solutions.

Hough transform [2, 3] and RANSAC [4] have been
widely used in shape matching. Hough transform often re-
quires a careful selection of its parameters (e.g. bin size),
and easily breaks down in the presence of clutter. RANSAC
is more resistant to clutter: it generates random matching
hypotheses for a small number of anchor points, and then
evaluates the hypotheses with all the points. As it becomes
increasingly slow with more outliers in the image, heuris-
tics and general Hough transform have been used [4] to
preprocess the local matches and prune the unpromising
ones. However, these remedies help little when local fea-
ture matching becomes increasingly ambiguous. In addi-
tion, neither Hough transform nor RANSAC directly pro-
duces point-to-point feature correspondences.

Object matching has also been studied as a graph match-
ing problem. For special cases where the graphs have
no loops or the target candidates have linear orders, exact
polynomial-time algorithms such as dynamic programming
[5] and max flow [6] can be used. Graph matching in gen-
eral is NP-hard and an exact solution is often too slow to be
feasible for large scale problems.

Various approximation methods have been developed.
Iterative Conditional Modes (ICM) [8] is a local optimiza-
tion method that gets easily trapped in local optima. Back
tracking is a graph search method with pruning heuristics
[7]. Graph cut [9] and belief propagation (BP) [11] are re-
cent global search methods that have been applied to a range
of matching problems including stereo [10, 12], motion esti-
mation [18], object pose estimation [14], tracking [13], and
recognition [15]. They often have a linear to quadratic com-
plexity with respect to the number of target candidates and
become slow when searching over large ranges in target im-
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ages. Large range searching is precisely what scale and ro-
tation invariant matching demands.

Mathematical programming is yet another approach to
object matching. Linear programming has been used in ob-
ject matching without scale and rotation changes [20]. In-
teger quadratic programming and its linear relaxation [19]
have been proposed for scale-invariant matching. Soft-
assign [16] with its extension [17] is one of the few methods
that handle large object deformations. It employs an itera-
tive optimization routine that alternates between local point
matching and global deformation matching.

We propose a linear method for scale and rotation invari-
ant object matching. We explicitly model scaling and rota-
tion, and approximate the resulting formulation by a convex
program. Using the lower convex hull property, we can ef-
fectively solve the program on a small number of variables.
Our method thus has a complexity rather independent of
the number of target candidates, making it suitable for very
large scale problems. The relaxed results can be further im-
proved by successively shrinking trust regions.

Our extensive experimentation demonstrates that the
proposed linear solution is accurate, fast, and robust. It
works well with both scale and rotation invariant features
such as SIFT [4] and non-invariant features such as shape
context [21] and simple image patches.

2. Scale and Rotation Invariant Matching

Given two sets of points, each point associated with a
feature vector, we would like to detect the model set in a
target set that contains a globally translated, scaled, rotated,
and locally deformed version of those model points among
some irrelevant clutter points (Fig. 2).
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Figure 2. Our matching criterion minimizes feature matching cost

and spatial matching cost. The feature matching cost is deter-

mined by the difference of the feature vectors associated with each

model point p and its match f(p), and the spatial matching cost

is determined by the difference between the vectors (p,q) and

(f(p), f(q)), invariant to unknown global scaling and rotation.

2.1. Criterion

Our objective is to find every model point a correspond-
ing target point so that they share similar local features and
pairwise spatial connections. Formally, let M be the set
of model points and N the set of all pairs of neighboring
model points. Let f(p) be the target point matched to model

point p. Our objective function minimizes both feature and
spatial matching costs:

min
f







∑

p∈M

c(p, f(p)) + λ
∑

{p,q}∈N

g(p,q, f(p), f(q))







Here, c is the feature matching cost which is small if the
model point p and target point f(p) have small feature dif-
ference; g is the spatial matching cost which is small if the
spatial connection (p,q) is similar to (f(p), f(q)) under
some global geometrical transformation; and λ controls the
relative weight of the two terms.

The objective function that admits scaling and rotation
invariance in the spatial matching cost can be written as:

min
f ,s,R

{
∑

p∈M

c(p, f(p))+

λ
∑

{p,q}∈N

‖R · (p − q) − s · (f(p) − f(q))‖} (1)

where s and R are unknown scaling factor and rotation ma-
trix respectively. We thus have to find the point correspon-
dence and estimate the scale and rotation simultaneously.

Note that the feature matching cost c is not a function of s
and R. However, it is by no means restrictive to features that
are scale and rotation invariant, e.g. SIFT [4]. For general
features, we compute matching cost as follows. For model
point p and target point t, we compute the features for t at
multiple scales s and angles θ, and use the minimal distance
between the features of t and p as the matching cost c(p, t):

c(p, t) = min
s,θ

distance(feature(p), feature(t; s, θ)). (2)

The nonlinear optimization problem in Eqn. (1) involves
both discrete and continuous variables. For real applica-
tions, there are a large number of model points and target
points. Exhaustive search is not an option. Our idea is to
convert the problem into a small set of convex programs
which can be efficiently solved. For the rest of the paper,
we assume points are in 2D and their spatial matching cost
is measured with L1 norm, although our approach can be
extended to higher dimensions as well as L2 norm.

2.2. Matrix Formulation

We write Eqn. (1) in a succinct form using assignment
matrix X . Let 1n denote a column vector of n 1’s, ′ matrix
transpose, tr the trace of a matrix, and | · | the summation of
absolute values of all the elements in a matrix. Let nm and
nt be the numbers of model and target points respectively.

min ε(X, s, R) = tr(C ′X) + λ|EMR − sEXT | (3)

subject to X1nt
= 1nm

, X ∈ {0, 1}nm×nt

s > 0

R′R = I.
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There are 3 unknown variables:

X = nm ×nt binary assignment matrix. Each row of X
contains exactly one 1: X(i, j) = 1 indicates that
the model point i is matched with target point j.

s = global scaling factor s.
R = 2× 2 global coordinate rotation matrix. It is in fact

the transpose of the R in Eqn. (1).

and 4 known matrices:

M = nm × 2 model point 2D coordinate matrix.
T = nt × 2 target point 2D coordinate matrix.
C = nm×nt feature matching cost matrix. C(i, j) is the

feature matching cost between model point i and
target point j, i.e., c(.) in Eqn. (1).

E = ne ×nm edge-node incidence matrix for the model
graph, where ne = |N |. Each row describes an
edge with exactly two non-zero numbers: 1 and
−1, and their signs can be switched. For exam-
ple, E(e, i) = 1, E(e, j) = −1 indicate edge e
connects nodes i and j in the model.

This optimization problem has a nonlinear objective
function subject to linear and quadratic constraints and in-
cludes both continuous and integer variables. It is NP hard.

We make two additional comments regarding the formu-
lation. 1) We can take reflection into account by dropping
s > 0: a negative s simply means that the spatial connection
in the image could be a mirror reflection of that in the model
(after rotation), scaled by factor |s|. Our method can be ex-
tended accordingly. 2) It is essential to separate scale and
rotation in the spatial matching cost. If we combine scale s
and rotation R into one similarity transform S = R/s, i.e.,

min ε(X, S) = tr(C ′X) + λ|EMS − EXT |

we would introduce a strong bias favoring small scales. The
formulation is seemingly simpler but essentially wrong, re-
sulting in matching a spurious small pattern in the image.

2.3. Linearization

Instead of directly solving the hard mixed integer nonlin-
ear program in Eqn. (3), we convert it into linear program
which can be efficiently solved. There are three obstacles in
linearizing Eqn. (3): 1) the L1 norm in the spatial matching
term, 2) the nonlinearity introduced by the multiplication of
the integer variable X and the continuous variable s, and 3)
the quadratic constraint on the rotation matrix R.

First, we introduce ne × 2 non-negative auxiliary matri-
ces, Y and Z, to turn the L1 norm optimization into a linear
objective with linear constraints. It is well known that:

min |x| ⇔ min y + z
subject to y − z = x

y ≥ 0, z ≥ 0

Applying to every element of EMR − sEXT , we have:

min ε(X, s, R, Y, Z) = tr(C ′X) + λ1′ne
(Y + Z)12

subject to Y − Z = EMR − sEXT (4)

Y ≥ 0, Z ≥ 0.

Intuitively, for each element pair in Y and Z, since at most
one of them is nonzero as ε is minimized, the sum of all the
elements in Y and Z must be equal to |EMR − sEXT |.

Next, we introduce assignment variables at multiple
scales {Xl} such that X =

∑

l Xl, to transform the mul-
tiplication of s and X in Eqn. (4) into a linear function of
Xl subject to linear constraints among s, Xl, and X . Illus-
trated in Fig. 3, we quantize s into ns discrete values, 0 <
s1 <. . .<sns

. When s= sl, X =Xl. Since only one scale
is realized in a matching solution, sX =

∑ns

l=1
slXl and

hence sEXT =
∑ns

l=1
slEXlT . Recall that X1nt

= 1nm
,

we thus also have
∑ns

l=1
slXl1nt

= s1nm
, which enforces

each model point to select the same scale in matching. As
we relax the binary constraints on Xl to any value within
[0, 1], s is no longer restricted to a discrete level sl, but can
be any real number within [s1, sns

].
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Figure 3. Scale linearization. As the assignment matrix X is rep-

resented as a combination at basis scales, the scaled assignment

term sX in the spatial matching cost becomes linear.

Finally, we re-parameterize the rotation matrix R in
terms of its elements u, v, and approximate the unit nor-
mal constraint u2 + v2 = 1, i.e., a circle in the uv plane,
with four line segments (Fig. 4):

R′R = I ≈ R =

[

u −v
v u

]

u ± v = ±1, |u| ≤ 1, |v| ≤ 1

u

v linearized constraint:
u ± v = ±1

|u| ≤ 1, |v| ≤ 1

original constraint:
u2 + v2 = 1

Figure 4. Rotation linearization. The orthonormal constraint on

the rotation matrix R is approximated by four line segments.
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Overcoming the three obstacles, we reach a complete lin-
earization of the original optimization problem in Eqn. (3):

LP: min ε(X, s, u, v, Y, Z, X1, . . . , Xns
) =

tr(C ′X) + λ1′ne
(Y + Z)12 (5)

subject to Y − Z = EM

[

u −v
v u

]

−
ns
∑

l=1

slEXlT

Y, Z ≥ 0, u ± v = ±1, |u| ≤ 1, |v| ≤ 1

X =
ns
∑

l=1

Xl, Xl ≥ 0, ∀l

ns
∑

l=1

slXl1nt
= s1nm

X1nt
= 1nm

, X ≥ 0

We relax X into the continuous domain, the optimal target
point coordinates are computed by T ∗ = XT .

2.4. Lower Convex Hull Speedup

The solution to the LP in Eqn. (5) can still be slow when
the number of variables, proportional to nm × nt × ns, is
large. Fortunately, we can throw away many variables with-
out changing the optimum of the linear program.

The key observation is that, for each model point p,
we only need to keep those target points t and their as-
sociated feature matching costs c(p, t) that correspond to
the vertices of the lower convex hull of the point cloud
{(t, c(p, t)) : ∀t}.

Since the LP uses a linear combination of basis costs to
approximate the original cost, at any fixed scale and rota-
tion, ε is minimized on the lower convex hull of each fea-
ture’s matching cost surface. The lower convex hull ver-
tices are what matters. The effective number of variables
becomes many times smaller and relatively independent of
the number of target points.

The lower convex hull trick maintains the optimality of
LP in the relaxed continuous domain, but the approximation
to the original discrete solution could be rough, especially
if the search range is large. We solve this problem with
a successive trust region shrinkage scheme similar to [20].
Note that we only shrink the trust region for point locations,
not for scale or rotation parameters. As it becomes smaller,
the linear approximation becomes more accurate.

The average complexity of a linear program is roughly
logarithmic to the number of variables and linear to the
number of constraints [22]. In our formulation, the num-
bers of variables and constraints are largely decoupled from
the number of target points with the lower convex hull trick.
The average complexity of our LP is therefore nearly in-
dependent of the number of target points. Typically, for
matching 100 model points and thousands of target points,

each LP iteration takes less than 1 second on a 2.8GHz PC,
and the trust region shrinkage runs 4-8 iterations.

2.5. Algorithm

Our scale and rotation invariant matching algorithm is:

1. Compute the feature matching cost matrix C between
model features and target features.

2. Initialize trust region for each model point to be the
entire target image.

3. Compute the lower convex hull vertices of matching
costs for each model point within its trust region.

4. Solve 4 programs in Eqn. (5), one for each uv line.
5. Update the trust regions. If they are small enough, find

the linear program that has the lowest matching cost ε
and output the matching result; otherwise go to 3.

We simplify the algorithm in the implementation. Instead of
solving 4 linear programs in each iteration, we only refine
the one that yields the lowest cost in the first iteration. The
simplified algorithm is still accurate and robust.

3. Experiments and Discussions

We choose the greedy matching scheme ICM for main
comparison. BP and graph cut methods are not used in
comparison because they are not easily extended to solve
the proposed energy function efficiently.

3.1. A Working Example

We first use the synthetic point pattern matching in Fig. 5
to illustrate our algorithm. The model graph is a Delaunay
triangulation of 98 points of a fish shape. The target object
is a locally deformed, globally scaled and rotated version of
the template with 100 additional random noise points.

For each target point, we compute the shape context at 7
different scales ranging from 0.5 to 2 times of the template
size, and at multiple angles by shifting the shape context
along the angular axis. The feature matching cost is the
minimal χ2 distance between the model feature and all the
scaled and rotated versions of the target feature (Eqn. (2)).

While ICM fails to find the right correspondences even
with the correct scale and rotation (Fig. 5b), our algorithm
gets roughly the right scale and orientation after the initial
iteration (Fig. 5c). As we narrow down the trust region from
100 × 100 to 5 × 5 (Fig. 5d-f), the match is progressively
refined in scale, rotation, and correspondence.

3.2. Benchmark with Synthetic Point Sets

For synthetic data, we give ICM the advantage of know-
ing the right scale s and rotation R, i.e., the same energy
function is used, but s and R are fixed to the correct values.
We also consider the simplest greedy method, which finds
the best match for each model point separately.
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a) Model graph b) ICM given s and R
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c) Initial iteration d) Trust region 100 × 100
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e) Trust region 50 × 50 f) Trust region 5 × 5
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Figure 5. An example of the linear solution in matching a scaled

and rotated deformable shape. a) A deformable fish shape tem-

plate. b) Match found by ICM with known scale and rotation. c)

Our initial match when the trust region is the entire image. d-f)

Our results over iterations that shrink the trust regions. The algo-

rithm converges to the nearly perfect match.
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Figure 6. Our matching error for fish is smaller than ICM and local

matching in terms of both the mean (left) and the standard devia-

tion (right), for all three levels of clutter (one for each row).
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Figure 7. Our matching error for random point could is smaller

than ICM or local matching in terms of both the mean (left) and

the standard deviation (right), for all three levels of clutter.

Two synthetic point models are used to benchmark our
method, ICM, and the simple local search. One is the fish
in Fig. 5, the other is a random point cloud. The local defor-
mation is smooth for the fish, and restricted to a disturbance
of [0, 10] for the random cloud. The scale varies within
[0.5, 2], and the angle of rotation varies within [0◦, 360◦].
We consider three clutter levels, where the number of ran-
dom noise points is 50%, 100%, 150% of the number of
model points respectively.

For each test, we compute the mean and standard devi-
ation of the point matching errors. The matching perfor-
mance is quantified by the distributions of the error means
and standard deviations over all the trials. Good perfor-
mance has the distributions concentrated on the low match-
ing error range for both measures. Fig. 6 and Fig. 7 show the
histograms computed over 200 random trials for each con-
figuration. Our LP solution consistently gives much smaller
error than ICM with the right scale and rotation, and the lo-
cal matching results are always the worst. With increasing
clutter, our method still has a high chance of finding the
right scale, rotation, and point-to-point correspondences.

3.3. Real Videos

We test our method on two kinds of videos: our own
videos (book, magazine, bear) demonstrating scaling, rota-
tion, deformation, and occlusion, and YouTube videos (but-

terfly, bee, fish) of animals in their natural habitats.
Given a sample image for each video (Fig. 8 Row 1), we

label the object region, and build a model graph with in-
terest points and their neighboring connections through De-
launay triangulation. We use SIFT points for all the videos
except the fish, for which small image patches on randomly
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Figure 8. Our LP is accurate and robust in matching objects in challenging real videos where ICM fails. Row 1: images used to construct

object templates from the Delaunay triangulation of detected interest points. Row 2: ICM results and Row 3: our LP results on the same

frames. Row 4: point trajectories from the first (blue dots) to the last frame (red dots). Their shapes give telltale signs of scaling and

rotation (book and bear), complex local warping (magazine and butterfly), and segments of smooth movement (bee and fish).

a) Detection rate in a video
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b) Running time ratio of the proposed method to ICM
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Figure 9. Our LP method (black bar) has a much higher detection

rate than ICM (white bar) yet requiring a fractional running time.

selected edge points within the object region are used.

To apply ICM to these real videos, with no ground-truth
for scale and rotation available, we have to employ exhaus-
tive search for s (7 scales with step 0.25 from 0.5 to 2) and R

video book magazine bear butterfly bee fish

#frames 856 601 601 771 101 131

#model 151 409 235 124 206 130

#target 2143 1724 1683 1405 1029 7316

time 1.6 11 2.2 1 2 0.9

accuracy 99% 97% 88% 95% 79% 95%

Figure 10. Performance statistics of our LP method on real videos.

The five rows give the total number of frames, the number of

model points, the average number of target points per frame, the

typical running time measured by the number of seconds that one

LP iteration takes on a 2.8GHz PC, and the accuracy measured by

the detection rate over the entire video, as shown in Fig. 9.

(every 30◦). Since ICM is rather efficient, its performance
is an indicator of the complexity of the matching problem.

Our LP solution greatly outperforms ICM in terms of the
quality of individual matches (Fig. 8 Rows 2-3), as well as
the robustness (Fig. 9a) and efficiency (Fig. 9b) in matching
the entire sequences.

Our single-frame-based matching algorithm requires no
initialization and can track a deformable object undergoing
large and complex motion over long video sequences (Fig. 8
Row 4). The shapes of these long tracks are characteristic
of the object’s deformation and movement patterns, which
could be useful for activity recognition.

Fig. 11 shows sample matching results and Fig. 10 shows
the overall performance statistics.
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Frame 1 Frame 301 Frame 601 Frame 751 Frame 796 Frame 801

Frame 806 Frame 811 Frame 821 Frame 836 Frame 851 Frame 856

Frame 1 Frame 81 Frame 121 Frame 201 Frame 241 Frame 261

Frame 321 Frame 341 Frame 381 Frame 441 Frame 501 Frame 601

Frame 1 Frame 81 Frame 141 Frame 221 Frame 261 Frame 331

Frame 366 Frame 451 Frame 481 Frame 501 Frame 581 Frame 601

Frame 1 Frame 156 Frame 181 Frame 211 Frame 231 Frame 321 Frame 336

Frame 446 Frame 521 Frame 601 Frame 641 Frame 706 Frame 766 Frame 771

Frame 1 Frame 9 Frame 17 Frame 25 Frame 33 Frame 41 Frame 49

Frame 57 Frame 65 Frame 73 Frame 81 Frame 89 Frame 93 Frame 97

Frame 1 Frame 17 Frame 29 Frame 45 Frame 50 Frame 55 Frame 65

Frame 81 Frame 85 Frame 90 Frame 93 Frame 109 Frame 121 Frame 131

Figure 11. Sample matching results. These objects all have large scaling and rotation. In particular, book could be occluded, magazine has

large warping, bear is textureless, butterfly flaps wings, bee is striated and circling in depth, and fish has weakly distinguishable features.
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The first three video sequences all have a large range of
scaling and rotation. In addition, we test matching perfor-
mance on occlusion with a hand in front of the book, on
complex deformation with significant warping of the mag-
azine, on appearance with texturelessness of the furry toy
bear, where local SIFT features (marked by yellow dots in
Fig. 11) become highly ambiguous.

The last three are YouTube videos of animals moving
naturally in their habitats. The image quality is low due to
heavy compression. In addition, we test matching perfor-
mance on large deformation with wing flapping of the but-
terfly, on appearance with indistinguishable texture features
of the bee and the fish, and on large viewpoint change with
the in-depth circling of the bee.

The results in Fig. 11 and Fig. 10 show that our LP solu-
tion is accurate and robust in face of all these challenges.
The running time is largely dependent on the number of
model points, and insensitive to the number of target points.
The detection rate is largely dependent on the distinctive-
ness of features that allows the objective function to tell
model points apart from each other: It is higher than 95%
for the book, magazine, butterfly, and fish, lower for the
textureless bear, and lowest for the striated bee.

Matching the tropical fish only appears simple. There are
few distinctive SIFT features. We detect edges instead to lo-
cate target points, and use small image patches as their fea-
tures. The feature matching cost is defined as the minimum
color block Euclidean distance at different rotations, which
is roughly scale invariant for these stripes. Our method ac-
tually works pretty well with such crude features consid-
ering the large changes in scale, rotation, and color. This
example also demonstrates that our method is versatile and
robust with various features and matching cost functions.

4. Summary

Scale and rotation invariant object matching is an NP
hard problem that few existing methods can deal with ef-
fectively. We develop a linear solution with a computational
complexity insensitive to the number of target points, mak-
ing it suitable for large scale matching problems.

Our results on both synthetic and real data demonstrate
the accuracy, robustness, and efficiency of our method. It
can be directly used to track an object with large shape de-
formations and geometrical transformations, and has poten-
tial to be applied to object and activity recognition.
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