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Abstract
We propose human action detection based on a succes-

sive convex matching scheme. Human actions are repre-
sented as sequences of postures and specific actions are de-
tected in video by matching the time-coupled posture se-
quences to video frames. The template sequence to video
registration is formulated as an optimal matching problem.
Instead of directly solving the highly non-convex problem,
our method convexifies the matching problem into linear
programs and refines the matching result by successively
shrinking the trust region. The proposed scheme represents
the target point space with small sets of basis points and
therefore allows efficient searching. This matching scheme
is applied to robustly matching a sequence of coupled bi-
nary templates simultaneously in a video sequence with
cluttered backgrounds.

1. Introduction
Detecting gestures in controlled environment has been

intensively studied and many realtime systems have been
implemented [1][2][3]. Finding actions of people in a video
recorded in an uncontrolled environment is still a largely un-
solved problem, with many important potential applications
such as surveillance and content based video retrieval. The
main difficulty for action recognition in general video de-
rives from the fact that there is no effective way to segment
an object in such videos. Other factors such as the highly
articulated character of the human body, large variability of
clothing, and strong background clutter further increase the
difficulty of action recognition.

In this paper, we study methods to detect a specific hu-
man action in such an uncontrolled setting. We represent
an action as a sequence of body postures with specific tem-
poral constraints. We can then search for a given action by
matching a sequence of coupled body posture templates to
the video sequence. We formulate the matching problem
as an energy minimization problem. The objective func-
tion is minimized such that the matching cost is low and at
the same time we try to smooth the intra-frame matching
and inter-frame object center’s relative position. A center
continuity constraint is important to force the matching to
stick to one object in cluttered video where multiple objects
may appear. As shown in our experiments, a greedy scheme

such as ICM [4] is not robust enough if there is strong clut-
ter or large deformation. Robust matching methods such
as Graph Cut [5], Belief Propagation (BP) [6] and most re-
cently a Linear Programming (LP) relaxation scheme [7]
have been studied for finding correspondence in single im-
age pairs using pairwise constraints. These methods are not
easily extended to include the center continuity constraint.
In this paper, we consider a more straightforward approach
— a successive convex matching scheme to register tem-
plate image sequences to targets in video. We follow an LP
relaxation scheme [8] that has been applied to motion esti-
mation, reshaping the problem so that the inter-frame con-
straint can be introduced. Instead of directly solving the op-
timal matching problem, the proposed scheme converts the
optimization problem into easier convex problems and lin-
ear programming is applied to solve the sub-problems. An
iterative process updates the trust region and successively
improves the approximation. This convex matching scheme
has many useful features: it involves only a small set of ba-
sis target points, and it is a strong approximation scheme.
It is also found to be robust against strong clutter and large
deformations, necessary for success of an action recogni-
tion scheme. After template to video registration, we com-
pare the similarity of the matching targets in video with the
templates by matching cost and degree of deformation.

Finding people and recognizing human actions is a re-
search area with a long history in vision. Searching for
static postures [9][10][11] has been intensively studied. For
action recognition, most previous work searches for mo-
tion patterns, since motion is resistant to clothing change.
Motion based schemes usually need tracking or background
motion compensation [12] if the camera is not fixed. One
motion matching scheme without explicit motion estima-
tion is also studied [13]. In recent years, appearance based
schemes received a lot of interest. In such schemes, an ap-
pearance model is explicitly matched to a target video se-
quence in action detection. Appearance based approaches
are more effective if camera motion is involved. One ap-
pearance approach is to recognize action by a body parts
model [14][15][16]. Detecting the human body configura-
tion based on smaller local features is another appearance
matching scheme which has been applied to detecting ac-
tion in a single image [9][11]. In this paper, we follow the
appearance matching direction and study a convex method
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for video sequence matching. We explicitly match frames
by using local features with intra-frame pairwise constraint
and inter-frame position constraint over a longer time inter-
val, thus enabling the scheme to detect complex actions.

2. Matching Templates to Video
We formulate the sequence matching problem as fol-

lows. We extract n templates from a video sequence, which
represent key postures of an object in some specific action.
Template i is represented as a set of feature points Si and the
set of neighboring pairs Ni. Ni consists of all the pairs of
feature points, connected by edges in the Delaunay graph of
Si. Fig. 1 illustrates intra-frame and inter-frame constrained
deformable video matching. Matching a template sequence
to a video can be formulated as an optimization problem.
We search for matching function f to minimize the follow-
ing objective function:

min
f

⎧⎨
⎩

n∑
i=1

∑
s∈Si

Ci(s, f i
s) + λ

n∑
i=1

∑
{p,q}∈Ni

d(f i
p − p,

f i
q − q) + μ

n−1∑
i=1

d(s̄(i+1) − s̄i, f̄ (i+1) − f̄ i)

}

Here, Ci(s, f i
s) is the cost of matching feature point s in

template i to point f i
s in a target frame; f̄ i and s̄i are centers

of the matching target points and template points respec-
tively for the ith template; Distance d(., .) is a convex func-
tion. The first term in the objective function represents the
cost of a specific matching configuration. The second and
third terms are intra-frame and inter-frame regularity terms
respectively. The coefficients λ and μ are used to control the
weights of the smoothing terms. In this paper, we focus on
problems in which d(., .) is defined using L1 norm. As will
be shown later, in this case, a linear programming relaxation
of the problem can be constructed. To simplify the match-
ing process, we enforce that target points for one template
cannot be dispersed into several target frames. The match-
ing frame for template i is specified as i0+ Δi, in which
i0 is a start frame number and Δi is the temporal offset of
template frame i.

Figure 1. Deformable video matching.

The above optimization problem is non-linear and usu-
ally non-convex, because matching cost functions Ci(s, t)

are usually highly non-convex with respect to t in real appli-
cations. In the following, we discuss feature selection and
methods to cast the non-convex optimization problem into
a sequential convex programming problem, so that a robust
and efficient optimization solution can be obtained.

2.1. Features for Matching
To match people across clothing change, we need to

choose features that are at the same time not sensitive to col-
ors and robust to deformations. Even though different fea-
ture types can be used, here we use edge features to demon-
strate the usefulness of the matching scheme. Edge maps
have been found to be very useful for object class detection,
especially matching human objects. To increase match-
ing robustness, instead of directly matching edge maps, we
match a transformed edge map. A distance transform is ap-
plied to turn edge maps into a grayscale representation in
which values are proportional to the distances to the nearest
edge pixels. Small image patches on these distance trans-
form images are found to provide good features in match-
ing. To make the local features incorporate more context,
we calculate the log-polar transform of the distance trans-
form image centered on the selected feature points in the tar-
get and template images. The log-polar transform simulates
the human visual system’s foveate property and puts more
focus in the center view than the periphery views. This fea-
ture is similar to the blurred edge features in [7] for object
class detection. The log-polar distance transform feature
increases robustness in matching. Nevertheless, without a
robust matching scheme the matching is still very likely to
fail.

2.2. Linear Programming Relaxation and
Simplex Method

To linearize the matching cost term in the non-linear ob-
jective function, we select a set of basis target points for
each feature point in a template. Then, a target point can be
represented as a linear combination of these basis points,
e.g, f i

s =
∑

t∈Bi
s
wi

s,t · t, where s is a feature point in

template i, and Bi
s is the basis target point set for s. We

will show that the “cheapest” basis set for a feature point
consists of the target points corresponding to the match-
ing cost surface’s lower convex hull vertices. Therefore
Bi

s is usually much smaller than the whole target point set
for feature point s. This is a key step to speed up the al-
gorithm. We can now represent the cost term as a linear
combination of the costs of basis target points. For tem-
plate i, the matching cost term can thus be represented as∑

s∈Si

∑
t∈Bi

s
wi

s,tC
i(s, t). A standard linear program-

ming trick of using auxiliary variables can be used to turn
L1 terms in the objective function into linear functions [17]:
we represent each term in | · | as the difference of two non-
negative auxiliary variables. Substituting this into the con-
straint, we replace the term in the objective function with
the summation of two auxiliary variables. In our formula-
tion, the summation equals the absolute value of the original
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term when the linear program is indeed optimized.
The complete linear program is written as:

min

⎧⎨
⎩

n∑
i=1

∑
s∈Si

∑
t∈Bi

s

wi
s,tC

i(s, t)+

λ

n∑
i=1

∑
{p,q}∈Ni

(xi+
p,q + xi−

p,q + yi+
p,q + yi−

p,q) +

μ

n−1∑
i=1

(ui+ + ui− + vi+ + vi−)

}

s.t.
∑
t∈Bi

s

wi
s,t = 1, ∀s ∈ Si, i = 1..n

xi
s =

∑
t∈Bi

s

wi
s,t · x(t), yi

s =
∑
t∈Bi

s

wi
s,t · y(t)

xi+
p,q − xi−

p,q = xi
p − x(p) − xi

q + x(q),

yi+
p,q − yi−

p,q = yi
p − y(p) − yi

q + y(q) ,

∀{p,q} ∈ Ni, i = 1..n

ui+ − ui− =
1
|Si|

∑
s∈Si

[xi
s − x(s)]

− 1
|Si+1|

∑
s∈Si+1

[xi+1
s − x(s)],

vi+ − vi− =
1
|Si|

∑
s∈Si

[yi
s − y(s)]

− 1
|Si+1|

∑
s∈Si+1

[yi+1
s − y(s)],

i = 1..n − 1
All variables ≥ 0

Here we define functions x(s) and y(s) as extracting the
x and y components of point s. The matching result f i

s =
(xi

s, y
i
s). It is not difficult to verify that either xi+

p,q or xi−
p,q

(similarly yi+
p,q or yi−

p,q , ui+ or ui− and vi+ or vi−) will be-
come zero when the linear programming achieves its mini-
mum; therefore we have xi+

p,q + xi−
p,q = |xi

p −x(p)− xi
q +

x(q)|, yi+
p,q+yi−

p,q = |yi
p−y(p)−yi

q+y(q)|, and so on. The
second and third regularity terms in the linear program ob-
jective function equal the corresponding terms in the origi-
nal non-linear problem. In fact, if Bi

s contain all the target
points and weights wi

s,t are binary variables (0 or 1), the LP
becomes an integer programming problem which exactly
equals the original non-convex problem. But, integer pro-
gramming is as hard as the original non-linear problem, and
therefore we are most interested in the relaxed linear pro-
gramming problem. The linear program has close relation
with the continuous extension of the non-linear matching
problem: the continuous extension of the non-linear prob-
lem is defined by first interpolating the matching cost sur-
faces Ci(s, t) piecewise-linearly with respect to t and then

relaxing feasible matching points into a continuous region
(the convex hull of the basis target points Bi

s). In the fol-
lowing, we also use Ci(s, t) to represent the continuous ex-
tension cost surfaces.

Property 1: If Bi
s = Li

s, where Li
s is the entire tar-

get point set of s for template i, and the continuous ex-
tension cost function Ci(s, t) is convex with respect to t,
∀s ∈ Si, i = 1..n, LP exactly solves the continuous exten-
sion of the discrete matching problem.

In practice, the cost function Ci(s, t) is usually highly
non-convex with respect to t for each site s. In this case:

Property 2: The linear programming formulation
solves the continuous extension of the reformulated discrete
matching problem, with Ci(s, t) replaced by its lower con-
vex hull for each site s.

For matching applications, the surface is the matching
cost surface. Note that in general the surface may have
holes, or consist only of irregular discrete 3D points in the
target point vs. cost space, e.g. if we only select edge points
in the target images for matching.

Property 3: We need only consider the basis set Bi
s com-

prised of the vertex coordinates of the lower convex hull of
Ci(s, t), ∀s ∈ S.

Thus, we can use only the smallest basis set — there is
no need to include all the candidate matching costs in the
optimization. This is one of the key steps to speed up the
algorithm.

The proposed solution of the relaxation scheme also has
the following structure property.

Property 4: Using the simplex method, there will be at
most 3 nonzero-weight basis target points for each site.

Proof: This property is due to the basic linear program-
ming property: if the optimum of an LP exists, the op-
timum must be located at one of the “extreme” points of
the feasible region. The extreme points of linear program-
ming correspond to the basic feasible solutions of LP. We
denote the constraints of our linear program by Ax = b,
x ≥ 0. Each basic feasible solution of LP has the for-
mat [K−1b, 0]T where K is an invertible matrix composed
of the columns of matrix A corresponding to the basic
variables. For site s, variable wi

s,t introduces a column

[..., 0, 1, x(t), y(t), 0, ...]T in A. It is not difficult to show
that the sub-matrix generated by these columns for a single
site has a rank at most 3. Therefore, we can have at most
three w for each site in the basic variable set. This implies
that the optimum solution has at most three nonzero w for
each site.

The initial basic variables can be selected in the follow-
ing way:

• Only one wi
s,t is selected as basic LP variable for each

site s in template i.

• xi
s, yi

s are basic LP variables.

• Whether xi+
p,q or xi−

p,q , yi+
p,q or yi−

p,q, ui+ or ui− and

vi+ or vi− are basic variables depends on the right
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hand side of the constraint; if the right hand side of
a constraint is greater than 0, the plus term is a basic
variable, otherwise the minus term becomes the basic
variable.

Importantly, Property 4 implies that for each site the pro-
posed LP relaxation searches only the triangles of the
lower convex hull vertices, in an efficient energy descent
manner. (And note that the triangles may be degener-
ate.) Fig. 2 illustrates the solution procedure of the simplex
method for an example two-frame video matching problem.
In this simple example, three features points are selected on
the objects in Figs. 2 (a, b) respectively and form triangu-
lar graph templates, shown in Figs. 2 (e, f). Figs. 2 (c, d)
show the target objects in clutter. Figs. 2 (g, h) show the
matching result. Figs. 2 (i, j, k, l, m, n) show the match-
ing cost surfaces for each of the six points on the template.
Figs. 2 (o, p, q, r, s, t) are the lower convex hull surfaces
for the respective cost surfaces. The searching process (se-
lected from 32 stages) for each site is illustrated in this ex-
ample. The blue dots indicate the target points located at
the coordinates of the lower convex hull vertices. The target
points corresponding to the basic variables are connected by
lines. The small rectangle is the weighted linear combina-
tion of the target points corresponding to the basic variables
at each stage. As expected, the proposed LP only checks
triangles (filled-blue) or their degenerates (lines or points)
formed by basis target points. When the search terminates,
the patch generated by the basic variables for each site must
correspond to vertices, edges or facets of the lower convex
hull for each site. As shown in this example, a single LP
relaxation usually has a matching result near the target but
not very accurate. We will discuss how to refine the result
by successively “convexifying” the matching cost surfaces.

2.3. Successive Relaxation
As discussed above, a single LP relaxation approxi-

mates the original problem’s matching cost functions by
their lower convex hulls. In real applications, several target
points may have equal matching cost and, even worse, some
incorrect matches may have lower cost. In this case, be-
cause of the convexification process, many local structures
are removed which on the one hand facilitates the search
process by removing many false local minimums and on the
other hand makes the solution not exactly locate on the true
global minimum. A successive relaxation method, succes-
sive convexification linear programming (SC-LP), can be
used to solve the problem. Instead of one step LP relax-
ation, we can construct linear programs recursively based
on the previous searching result and gradually shrink the
matching trust region for each site. A trust region for one
site is a rectangle area in the target image. Such a scheme
can effectively solve the coarse approximation problem in
single step LP.

In trust region shrinking, we use control points to an-
chor trust regions for the next iteration. We keep the control
point in the new trust region for each site and we can shrink

the boundary inwards. If the control point is on the bound-
ary of the previous trust region, other boundaries are moved
inwards. The trust region is the whole target image for the
first LP relaxation. Then we can refine the regions based on
previous LP’s solution. After we shrink the trust region, the
lower convex hull may change for each site. Therefore, we
have to find the new target basis and solve a new LP. This
process is illustrated in Fig. 3.

We select control points using a consistent rounding pro-
cess. In consistent rounding, we choose a site randomly and
check all the possible discrete target points and select the
one that minimizes the nonlinear objective function, by fix-
ing other sites’ targets as the current stage LP solution. This
step is similar to a single iteration of an ICM algorithm by
using LP solution as initial value. We also require that new
control points have energy not greater than the previous es-
timation.

Set initial trust region for each site 
the same size as target image

 Calculate matching costs for all
possible candidate target points

Find lower convex
hull vertices in trust regions
and target point basis sets

Build and solve LP
relaxation

Trust region small?

Update control 
points

Update
trust

regions

No

Yes Output results

Delaunay Triangulation of feature 
points on template images

Figure 3. Successive convex matching.

2.4. Action Detection
After the template to video registration, we can compare

similarity of the matching targets with templates to decide
how similar these two constellations of matched points are
and whether the matching result corresponds to the same ac-
tion as in the exemplar. We use the following quantities to
measure the difference between the template and the match-
ing object. The first measure is D, defined as the average
of pairwise length changes from the template to the target.
To compensate for the global deformation, a global affine
transform A is first estimated based on the matching and
then applied to the template points before calculating D. D
is further normalized with respect to the average edge length
of the template. The second measure is the average template
matching cost M using the log-polar transform feature. The
total matching cost is simply defined as M + αD, where α
has a typical value of 10 if image pixels are in range of
0-255. Experiments show that only about 100 randomly se-
lected feature points are needed in calculating D and M .
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Figure 2. Searching process of the linear program. (a, b) Template images; (c, d) Target images; (e, f) Feature points and template graph;
(g, h) Matching result; (i, j, k, l, m, n) Matching cost surfaces for each site on the template; (o, p, q, r, s, t) Convexified matching cost
surfaces: lower values on a surface show cooler colors; (u, v) illustrate the searching process of the linear program.

3. Experiment Results
3.1. Matching Random Sequences

In the first experiment, we test the proposed scheme with
synthetic images. In each experiment, three coupled ran-
dom template images are generated. Each template image
contains 50 random points in a 128×128 image. The target
images contain a randomly shifted and perturbed version
of the data points in 256 × 256 images. The perturbation
is uniformly disturbed in two settings: 0-5 and 0-10. The
center of the two templates are also randomly perturbed in
the range 0-5. We use the log-polar transform feature of
the distance transform image in all our experiments. We
compare our result with a greedy searching scheme. Other

standard schemes, such as BP, cannot be easily extended
to solve the minimization problem in this paper. Instead
we use BP to match each image pair separately as a bench-
mark in comparison. The Graph Cut, designed mainly for
stereo matching and motion estimation, is not included in
the comparison. Each experiment is repeated in a deforma-
tion and clutter setting over 100 trials. Fig. 4 shows the av-
erage matching error distribution in different assumed-error
regions. When both the noise level and distortion level are
low, the greedy scheme has comparable performance. Since
there is one single target in each image, BP has similar per-
formance as the proposed scheme for low deformation set-
ting experiments. Greedy scheme’s performance degrades
rapidly when the levels of noise and distortion increase. In
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Figure 4. Random sequence matching.

high noise density and large deformation cases, the pro-
posed scheme greatly outperforms the greedy scheme. It
is also better than a baseline BP scheme for large distortion
cases. One iteration of linear programming in this experi-
ment takes about 0.3 seconds in a 2.6GHz PC. The typical
number of iterations is 3. Fig. 5 shows comparison results
of matching random sequences in a different outlier pattern
setting which introduces an extra duplicated and perturbed
object into the second target frame. For BP and greedy
scheme, matching error for the second template frame is
the smaller one of matching either of the two objects in the
target frame. In this case, the proposed sequence matching
scheme yields much better results.

3.2. Matching Human Activities in Video
We test the proposed matching scheme with dataset [18]

which includes six gestures. We select templates with two
key postures from the first video clip in each category and
then randomly select 15 other video clips in each class for
testing (The video clips with mirror action are not included).
Fig. 6 shows examples of the two-key-frame templates in
the first row of each sub-figure. We select regions in the
two-frame templates for each of the six actions. Graph tem-
plates are automatically generated using randomly selected
edge points in the region of interest. The templates are then
used to compare with each testing video clip at each time
instant using the proposed matching scheme and the min-
imal matching cost is used as the score for a clip. Three
time scales 0.75, 1 and 1.25 are used in searching. Spatial
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Figure 5. Matching sequences with multiple objects.

(a) (b)

(c) (d)

Figure 6. Matching examples. In (a, b, c, d) top rows are templates
and bottom rows are matching results.

scale is fixed in the experiment. A video clip is classified as
an action if the corresponding key-posture templates gener-
ate the lowest match score among six actions. Fig. 6 shows
some matching examples and Table 1 shows the detection
confusion matrix: the method performs very well.

box clap jog walk run wave

box 14 1 0 0 0 0

clap 2 13 0 0 0 0

jog 0 0 14 0 1 0

walk 2 0 0 12 1 0

run 3 1 0 0 11 0

wave 2 1 0 0 0 12

Table 1. Confusion matrix for 15 randomly selected video clips
in each action class. Each row shows classification result for pre-
labeled testing data in an action category.

Fig. 7 shows an example of matching for cluttered im-
ages with the proposed sequence matching scheme, the
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(a) Template 1 (b) Template 2 (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Matching flexible objects. (a, b) Templates; (c, d) Target
image edge maps and feature points; (e, f) Matching with the pro-
posed scheme; (g, h) Matching with greedy scheme; (i, j) Chamfer
matching for each image pair; (k, l) Matching with BP for each
image pair.

greedy scheme, Chamfer matching and the BP matching.
Chamfer matching and BP match each single image pair
separately. The proposed scheme still works well in clut-
tered images, while the greedy scheme, Chamfer match-
ing and BP fail to locate the target. BP is also about 100
times slower. We further conducted experiments to search
for a specific gesture in video. In these test videos, a spe-
cific action only appears a few times. Target objects also
have large deformation with respect to the templates. The
templates we use have roughly the same scale as the test-
ing sequence. The template sequence is swept along the
time axis with a step of one frame, and for each instant we
match video frames with the templates. We first applied the
matching scheme to detect specific sign language gestures.
Sign language is challenging because of the very subtle dif-
ferences. Fig. 8 shows a searching result for the gesture
“work” in a 1000-frame video. The template sequence is
generated from a different subject. The two gestures in the
video are successfully located in the top two rank positions
of the shortlist. Fig. 9 shows a searching result for the ges-
ture “year” in a 1000-frame video. The starting and ending
frames of actions in video are ranked based on their match-
ing score. Five appearances of the gesture are located in
top 6 of the shortlist. One false detection is inserted at rank
5. Fig. 10 and Fig. 11 show experiments to locate two ac-
tions, kneeling and hand-waving, in indoor video sequences
of 800 and 500 frames respectively. The two-frame tem-
plates are from videos of another subject in different envi-
ronments. The videos are taken indoors and contain many
bar structures which are very similar to human limbs. The
proposed scheme finds all the 2 kneeling actions in the test
video in the top two of the shortlist; and all the 11 wav-
ing hand actions in the top 13 ranks. Fig. 12 shows the re-
sult of search for a “throwing” action in a 2500-frame base-
ball sequence. The object occupies very small part of the
video. There is large deformation and strong background
clutter. Closely interlaced matching results are merged and

(a) Templates

Frame: 428

Frame: 430

(b) Cost:41.21

Frame: 506

Frame: 508

(c) Cost:41:28

Frame: 406

Frame: 408

(d) Cost:41.55

Frame: 755

Frame: 757

(e) Cost:41.75

Frame: 888

Frame: 890

(f) Cost:41.85

Frame: 791

Frame: 793

(g) Cost:41.87

Frame: 662

Frame: 664

(h) Cost:41.91

Figure 8. Searching gesture “work” in a 1000-frame sign language
sequence. (a) Templates; (b..h) Top 7 matches of the shortlist.

(a) Templates

Frame: 303

Frame: 308

(b) Cost:43.9

Frame: 221

Frame: 226

(c) Cost:45.5

Frame: 410

Frame: 415

(d) Cost:46.0

Frame: 120

Frame: 125

(e) Cost:46.2

Frame: 336

Frame: 341

(f) Cost:46.4

Frame: 39

Frame: 44

(g) Cost:46.5

Frame: 806

Frame: 811

(h) Cost:47.0

Figure 9. Searching gesture “year” in a 1000-frame sign language
sequence. (a) Templates; (b..h) Top 7 matches of the shortlist.

our method finds all the 4 appearances of the action at the
top of the shortlist. We found that false detection in our
experiments is mainly due to similar structures in the back-
ground near the subject. Prefiltering or segmentation opera-
tions to partially remove the background clutter can further
increase the robustness of detection.

4. Conclusion
In this paper, we present a successive convex program-

ming scheme to match video sequences using intra-frame
and inter-frame constrained local features. By convexify-
ing the optimization problem sequentially with an efficient
linear programming scheme which can be globally opti-
mized in each step, and gradually shrinking the trust region,
the proposed method is more robust than previous match-
ing schemes. The matching scheme has unique features in
searching: it involves a very small number of basis points
and thus can be applied to problems that involve large num-
ber of target points. The proposed scheme has been success-
fully applied to locating specific actions in video sequences.
Because the template deforms, this scheme can deal with
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(a) Templates

Frame 665

Frame 679

(b) Cost:34.0

Frame 8

Frame 22

(c) Cost:34.4

Frame 661

Frame 675

(d) Cost:34.5

Frame 664

Frame 678

(e) Cost:34.6

Frame 663

Frame 677

(f) Cost:34.8

Frame 9

Frame 23

(g) Cost:34.9

Frame 10

Frame 24

(h) Cost:35.1

Figure 10. Searching “kneeling” in a 800-frame indoor sequence.
(a) Templates; (b..h) Top 7 matches of the shortlist.

(a) Templates

Frame 442

Frame 447

(b) Cost:40.00

Frame 31

Frame 36

(c) Cost:40.09

Frame 436

Frame 441

(d) Cost:40.09

Frame 27

Frame 32

(e) Cost:40.18

Frame 441

Frame 446

(f) Cost:40.33

Frame 433

Frame 438

(g) Cost:40.33

Frame 445

Frame 450

(h) Cost:40.37

Figure 11. Searching “right hand waving” in a 500-frame indoor
sequence. (a) Templates; (b..h) Top 7 matches of the shortlist.

large distortions between the template and the target object.
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