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Abstract. We propose a novel method to detect human poses in videos by con-
currently optimizing body part matching and object segmentation. With a single
exemplar image, the proposed method detects the poses of a specific human sub-
ject in long video sequences. Matching and segmentation support each other and
therefore the simultaneous optimization enables more reliable results. However,
efficient concurrent optimization is a great challenge due to its huge search space.
We propose an efficient linear method that solves the problem. In this method,
the optimal body part matching conforms to local appearances and a human body
plan, and the body part configuration is consistent with the object foreground
estimated by simultaneous superpixel labeling. Our experiments on a variety of
videos show that the proposed method is efficient and more reliable than previous
locally constrained approaches.

1 Introduction
Detecting human poses in videos has important potential applications in video editing,
movement analysis, action recognition, and human computer interaction. It is challeng-
ing due to body part articulation, self-occlusion and background clutter.

(a) (b) (c) (d) (e)
Fig. 1. To detect the human pose in (a), we first detect body part candidates (small set of samples
are illustrated in (b)), partition the image into superpixels in (c), and then we concurrently opti-
mize body part matching in (d) and foreground segmentation by superpixel labeling in (e). The
cardboard model in (d) is extracted from a single exemplar image; it contains only the information
about object foreground colors and body part rectangle shapes.

In this paper, we detect 2D poses of a specific human subject in monocular videos
using a cardboard model built from a single exemplar image. Fig.1 illustrates the prob-
lem we tackle: we concurrently optimize body part matching and object segmentation
for robust pose detection. Concurrently optimizing object matching and segmentation
enables more robust results since the two closely related tasks support each other. How-
ever, the concurrent optimization is a great challenge due to huge number of feasible
configurations. To make things worse, for our application it is difficult to obtain good
initializations for both tasks. We therefore have to solve a hard combinatorial prob-
lem. In this paper, we propose a highly efficient linear relaxation method to optimize
matching and segmentation concurrently for robust human pose detection in videos.
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Previous research on simultaneous matching and segmentation [25] focuses on ac-
tive contours and partial differential equation approaches. These methods require initial
contours to be close to real targets; deformable models are used and it is hard to extend
them to articulated object pose detection, which our method tackles.

PoseCut [18] is the first method for simultaneous human pose estimation and figure-
ground separation. It has been successfully applied to 3D human pose tracking in a
multiple-camera setting. PoseCut uses a parametric 3D human body model. It explicitly
enumerates a small set of poses around an initial guess and uses an efficient dynamic
graph-cuts method to compute the optimal foreground estimation for each hypothesis. A
gradient descent method is further used to find the optimal pose. PoseCut requires good
pose initialization in each video frame. Our proposed method removes this constraint.

Shape prior scheme [19, 26] is a popular way to combine pose estimation and seg-
mentation in restricted pose domains such as walking and running. With the object
shape prior, pose estimation is able to achieve reliable results; the estimated poses can
be further combined with a segmentation algorithm to obtain accurate object foreground
estimation. Unfortunately, for unconstrained human poses, the shape prior is weak. The
widely used iterative approach [19, 26] that alternates between shape matching and seg-
mentation does not work for our problem, since neither matching nor segmentation pro-
vides a good initialization for the other. We need methods that optimize object matching
and segmentation concurrently instead of iteratively.

Due to the overwhelming computational complexity, concurrent optimization of
matching and segmentation for unconstrained human pose detection has not yet been
achieved. The contribution of this paper is that we propose a novel linear method that
efficiently solves the problem. In this method, body part matching finds the optimal
pose that follows local appearances, resembles a human body plan, and the covering
region is consistent with the object foreground estimated simultaneously by superpixel
labeling. The linear optimization can be relaxed and efficiently solved using a branch
and bound method. This linear approach is general and can be easily extended to generic
object matching and segmentation.

1.1 Related Work
Different methods have been proposed for detecting human poses in videos and images.
With multiple view videos [1, 23], 3D poses can be detected. Extracting 3D poses in
single view videos [2, 24] is currently limited to movements in specific domains. In this
paper, we focus on finding 2D human poses in single view videos. Previous methods
for 2D human pose estimation use holistic models or body part graph models.

The holistic approach treats a human body as a whole entity. Poses are estimated
either by using pose classification [13] if the object can be segmented from the back-
ground, or by matching exemplars in databases [3–5]. Dynamic models have also been
combined with exemplar methods [6] to improve the performance in pose tracking. To
estimate unconstrained poses, exemplar methods become increasingly complex since
we have to deal with huge pose databases.

Human poses can also be estimated by matching a body part graph model to target
images. Body part matching scheme is flexible; it is able to model complex poses with
a compact representation. The challenge is how to search for the optimal pose in a huge
number of feasible configurations. If the body part relation graph is a tree, polynomial
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algorithms exist. Felzenszwalb et al. propose an efficient dynamic programming method
[9] for pose estimation. Ramanan et al. [7, 20] estimate human poses in cluttered images
using efficient message passing on trees. Recently, Andriluka et al. [28] extend the tree
methods and devise a strong pose detector. Tree structure methods sometimes over-
count local evidences because no constraints are directly applied among tree branches.

To solve the over-counting problem, non-tree graph models have also been studied.
Pairwise constraints between body parts are introduced to form loopy relation graphs.
Searching for poses using non-tree models is NP-hard. A branch and bound method [29]
is proposed to solve problems with extra constraints on legs. Approximation methods
based on belief propagation [14, 16], mathematical programming [15, 11] and proba-
bility sampling [10, 12] have also been proposed. In these methods, overlapping body
parts are uniformly penalized, which relieves the over-counting issue, but at the same
time, also introduces an undesired penalty to true overlapping body part configurations.

Image segmentation has been used to support body part graph matching in different
fashions. Mori [17] uses superpixels to guide pose detection. Ramanan [20] proposes
an effective learning method to generate strong body part detectors using soft image
segmentation. Johnson et al. [27] use image segmentation to enhance local part detec-
tion. Ferrari et al. [21] pre-segment images to obtain rough foregrounds in human upper
body pose estimation. In these methods, segmentation is not jointly optimized with the
tree structure body part matching. In [8], a pre-segmented object foreground is used
to constrain the layout of body parts in the optimization. In the sequential process, the
segmentation result greatly affects the performance of pose estimation.

Even though intensively studied, finding human poses in cluttered images and videos
is still largely unsolved. In this paper, we focus on detecting a specific subject’s poses in
single view videos. We propose an efficient linear method that concurrently optimizes
body part matching and foreground segmentation. It works for dynamic background
videos and unconstrained human poses, and to our knowledge no previous methods are
able to achieve the concurrent optimization efficiently in such settings.

2 Concurrent Matching and Segmentation for Pose Estimation
Our task is to detect the poses of a specific human subject in videos. To distinguish the
target subject, we extract a cardboard model from a single exemplar image. This proce-
dure is necessary since the target subject may be among a group of people in videos; in
this case, a generic pose detector will not work. The cardboard model includes 9 body
parts, i.e., a torso and 8 half limbs; each part’s appearance is represented by the average
RGB color; the foreground color histogram is also stored. We jointly optimize body
part matching and foreground estimation for robust pose detection. Formally, we try to
find body part matching X and foreground estimation Y in a constrained optimization:

min
X ,Y

{B(X ) + S(Y) +
∑

(u,v)∈I

|hu,v − gu,v|} (1)

s.t. hu,v = 1 if body parts cover point (u, v), otherwise hu,v = 0.

gu,v = 1 if point (u, v) is in a foreground superpixel, otherwise gu,v = 0.

Each feasible X determines a body part configuration in the target image and its cost is
B(X ). B(X ) is small if we detect the true pose. Foreground estimation Y is obtained
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by superpixel labeling, and its cost is S(Y), which is small if we label the real object
foreground. In Eqn.(1), (u, v) represents points in the target image, hu,v is the body
part covering map determined by X , and gu,v is the foreground map determined by Y .
The term

∑
(u,v)∈I |hu,v − gu,v|, where I is the target image point set, penalizes the

discrepancy between the body part covering and the foreground estimation. By mini-
mizing the objective function in Eqn.(1), we find the optimal body part matching and
foreground segmentation that are also consistent with each other.

2.1 Body Part Candidates and Superpixels
Before proceeding to concurrent optimization, we find body part candidates and parti-
tion the target image into superpixels. We search for body part candidates using Cham-
fer matching and color matching. The model shape and colors are extracted from a
single exemplar image. Chamfer matching correlates body part bars to the distance
transform of the target image edge map. The color differences of each body part with
the target image at different locations and orientations are also computed. Chamfer
matching costs and color matching costs are linearly combined to form the local body
part matching costs. Using non-minimum suppression, we locate body part candidates.

Each half limb candidate is represented by two end points, a rotation angle and
a rectangle of specific size. We further group the half limb candidates into full limb
candidates and reject apparent wrong pairs: if the distance between the end points of
two candidates is greater than a threshold, they cannot be connected together. For the
combined limb candidate, its cost is the linear combination of the upper and lower
body part matching costs, the distance between the connection joints and the difference
between the two sub-limb angles.

We use a graph-cuts method [22] to over-segment images into superpixels. A su-
perpixel contains image pixels that have similar appearance. The superpixels do not
consistently partition target objects into body parts. However, points on each limb tend
to be in the same superpixel. The overall object coverage, consisting of a bunch of
smaller patches, forms a stable foreground region.

The concurrent optimization in Eqn.(1) is a hard combinatorial problem. Due to
huge number of feasible configurations for body part assignment and superpixel label-
ing, exhaustive search is not feasible. Our strategy is to construct a linear formulation
and devise an efficient solution.

2.2 The Linear Optimization
We express Eqn.(1) as a linear optimization in the following three steps:

First, We express the body part matching cost B(X ) in Eqn.(1) using linear func-
tions and determine how body part covering map hu,v is related to body part assign-
ments. We introduce indicator variables xn,i. If body part n selects candidate i, xn,i =
1, and otherwise xn,i = 0. We also use (n, i) to denote the candidate i of body part n.
After merging the upper and lower limbs, we have 5 parts. Note that the pose estimation
still gives 9-part matching result.

Let the cost of assigning candidate i to body part n be cn,i, which can be computed
as discussed in §2.1. The overall body part assignment cost is

∑
n∈P

∑
i∈A(n)(cn,i ·

xn,i) , where P is the set of body parts and A(n) is the candidate set of part n. Since
each body part selects one and only one candidate, we have

∑
i∈A(n) xn,i = 1,∀n ∈ P .
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Apart from matching local appearances, body parts also need to follow a body plan:
the end points of limbs should be close to the appropriate torso end point. Fig.2(a)
illustrates the relation among body parts. The degree that a body part configuration
follows a valid body plan can be quantified as:∑

n∈P,n 6=t

||
∑

i∈A(n)

pn,ixn,i −
∑

k∈A(t)

tn,kxt,k|| , (2)

where pn,i is the upper end point of candidate (n, i); tn,k is the end point of torso
candidate k and the end point is adjacent to part n; t is the torso. The notations are
illustrated in Fig.2(a). ||.|| is the L1 norm. The L1 norm terms can be linearized using
auxiliary variables: min |ξ| is equivalent to min(η), s.t. − η ≤ ξ ≤ η, η ≥ 0. The
complete linear form is in Eqn.(3).

Limbs also tend to be symmetrical in spatial locations relative to the torso. If we
draw a line segment between the upper arm or the upper leg joints, the center should
be close to one suitable end of the torso. The following term is included to quantify the
degree of symmetry:∑

{n,m}∈L

||
∑

i∈A(n)

pn,ixn,i +
∑

j∈A(m)

pm,jxm,j − 2
∑

k∈A(t)

tn,kxt,k|| ,

where L is the set of symmetrical body part pairs. The notations are illustrated in
Fig.2(a). We also use the L1 norm so that this term can be linearized using the aux-
iliary variable trick. The body part matching cost can then be represented as the linear
combination of the local matching cost, the degree that it follows a body plan and the
symmetry cost.

For human pose detection, simply optimizing the above body part matching en-
ergy is insufficient because it has a strong bias towards single limb detection. To solve
the problem, we assemble body parts so that their overall covering is similar to the
object foreground, which, as discussed later, is obtained simultaneously by superpixel
labeling. To this end, we introduce auxiliary variables hu,v to represent the body part
covering map. Here (u, v) is a point in the target image point set I . If point (u, v) is
covered by the estimated body configuration, we wish hu,v to be 1, and otherwise, 0.

part a

part b

part c part d

Symmetrical part 
pair set:

Body part set:

(a)

(t,k)

(n,i)

point 
(u,v)

(b)

21

3

4

b1,4 3

b2,4

b3,4b1
b1,2

b2,3

(c)

Fig. 2. (a) Notations for body part matching. (b) Part covering. (c) A toy example of superpixel
labeling; the gray region is the foreground.
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hu,v is constrained by the body part assignment variables xn,i:∑
∀(n,i) covers (u,v)

xn,i ≥ hu,v, 0 ≤ hu,v ≤ 1, ∀(u, v) ∈ I.

If (u, v) is not covered by any part candidates, hu,v is set to 0. With such constraints, if
no body part covers (u, v), hu,v has to be 0; if at least one body part covers (u, v), hu,v

can be as big as 1, but it still can be 0. We therefore need to further make sure that hu,v

must be 1 if at least one body part covers the pixel:

hu,v ≥ xn,i, ∀(n, i) covers (u, v) .

As an example, in Fig.2(b), there are two part candidates covering point (u, v). The
relation between hu,v and x is: xn,i + xt,k ≥ hu,v , hu,v ≥ xn,i, hu,v ≥ xt,k and
0 ≤ hu,v ≤ 1. It is easy to verify that hu,v is indeed the body part covering map.

Next, we represent term S(Y) in Eqn.(1) in linear form and relate it to the fore-
ground map gu,v . We introduce binary variable yi to indicate whether superpixel i is on
the foreground or background. If superpixel i is on the foreground, yi = 1, and other-
wise yi = 0. To quantify the cost of labeling a superpixel as foreground, we compute
the smallest distance from each color in the superpixel to the foreground colors in the
template and sum all the color distances to form the superpixel labeling cost. Denoting
the cost as the same c as the body part labeling cost but with a single index, the overall
cost of the foreground estimation is

∑
i∈V(ci · yi) , where V is the set of superpixels in

the target image.
Simply minimizing the superpixel assignment cost would result in a small fore-

ground estimation. We need to constrain the size of the foreground segmentation to
remove the bias. Assuming that the area of superpixel i is ri, we constrain the object
foreground to have an approximate area sf , which is the exemplar foreground area.
We therefore need to minimize |

∑
i∈V(ri · yi) − sf | . The absolute value of the area

difference can be linearized using auxiliary variables.
Besides, we hope that an object foreground contains a group of connected super-

pixels. Since connected regions tend to have small perimeter, we minimize the overall
boundary length of the foreground superpixels to implicitly enforce this constraint. Let
bi,j be the length of the common boundary between the neighboring superpixels i and
j, and bi be the length of the common boundary between superpixel i and the im-
age bounding box. The perimeter of the foreground region is:

∑
{i,j}∈Ns

(bi,j · |yi −
yj |) +

∑
i∈D(bi · yi) , where Ns is the set of neighboring superpixel pairs; D is the

set of superpixels adjacent to the image bounding box. Fig.2(c) illustrates a toy exam-
ple in which Ns = {{1, 2}, {2, 3}, {1, 4}, {2, 4}, {3, 4}} and D = {1} and the above
equation computes the foreground perimeter. The above connectivity term can also be
linearized using auxiliary variable tricks. The superpixel labeling energy S(Y) is there-
fore the linear combination of the three terms: the superpixel color matching term, the
size term and the connectivity term.

To facilitate the comparison of foreground estimation with body part covering, we
introduce auxiliary variables gu,v to represent the foreground map at the image pixel
level. If (u, v) in the target image is covered by a superpixel, gu,v has the same value
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as the superpixel label: gu,v = yi,∀(u, v) ∈ Ri , i ∈ V, where Ri is the point set of
superpixel i.

Finally, we are ready to express the complete optimization. we have formulated
B(X ), S(Y), hu,v and gu,v in Eqn.(1) using linear functions and linear constraints.
With the above settings,

∑
(u,v)∈I |hu,v − gu,v|, where I is the set of points in the

target image, equals the difference between the body part covering region and the fore-
ground region estimated in the superpixel labeling. When minimizing the total energy
B(X ) + S(Y) +

∑
(u,v)∈I |hu,v − gu,v|, we find the optimal body part matching and

foreground estimation that are consistent with each other. This consistency criterion is
soft, and therefore it allows partial mismatches between the body part rectangles and the
foreground superpixels. The concurrent optimization is also a principled way to solve
the over-counting issue without introducing an undesired penalty for truly overlapping
body parts, since body parts are now encouraged to fit the foreground instead of being
simply pushed away from each other.

2.3 Relaxation and Branch and Bound Solution
Pose estimation can therefore be formulated as the following linear optimization:

min{
∑

(u,v)∈I

zu,v + α1

∑
n∈P

∑
i∈A(n)

(cn,i · xn,i) + α2

∑
n∈P,n 6=t

2∑
l=1

p(l)
n + (3)

α3

∑
{n,m}∈L

2∑
l=1

q(l)
n,m + β1

∑
i∈V

(ci · yi) + β2[
∑

{i,j}∈Ns

(bi,j · yi,j) +
∑
i∈D

(bi · yi)] + β3w}

s.t.
∑

i∈A(n)

xn,i = 1,∀n ∈ P.
∑

∀(n,i) covers (u,v)

xn,i ≥ hu,v, 0 ≤ hu,v ≤ 1 ,∀(u, v) ∈ I.

hu,v ≥ xn,i,∀(n, i) covers (u, v) ,∀(u, v) ∈ I.

gu,v = yi,∀(u, v) ∈ Ri,∀i ∈ V. − zu,v ≤ gu,v − hu,v ≤ zu,v,∀(u, v) ∈ I.

−p(l)
n ≤

∑
i

p
(l)
n,ixn,i −

∑
k

t
(l)
n,kxt,k ≤ p(l)

n , l = 1..2, n ∈ P, n 6= t.

−q(l)
n,m ≤

∑
i

p
(l)
n,ixn,i +

∑
j

p
(l)
m,jxm,j − 2

∑
k

t
(l)
n,kxt,k ≤ q(l)

n,m,

l = 1..2, {n, m} ∈ L which includes two arms and two legs, t is the torso.

−yi,j ≤ yi − yj ≤ yi,j ,∀{i, j} ∈ Ns. − w ≤
∑
i∈V

(ri · yi)− sf ≤ w.

All variables ≥ 0, x, y are binaries.

The variables xn,i, yi, hu,v and gu,v follow the previous definitions. The auxiliary vari-
ables zu,v , p

(l)
n , q

(l)
n,m, yi,j and w are included to help turn the L1 norm terms into linear

functions. Coefficients p
(l)
n,i, l = 1..2, are the elements of pn,i, and t

(l)
n,k, l = 1..2, are

the elements of tn,k; p and t are defined in Eqn.(2). In the objective function, the terms
with α coefficients correspond to the body part assignment cost B(X ) in Eqn.(1); β
coefficient terms correspond to the superpixel labeling cost S(Y); and the z term is the
covering consistency

∑
(u,v)∈I |hu,v − gu,v| in Eqn.(1). The α and β coefficients are
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selected manually by trial and error; they are fixed in all the experiments. Typical values
are α1 = 1, α2 = α3 = 0.1 and β1 = β2 = β3 = 0.01.

In this formulation, the variables x and y for body parts and superpixels are binary.
The map variables g and h are continuous. Directly solving the mixed integer program
is not feasible. We relax it for an approximate solution. A relaxation of both x and y into
continuous variables yields weak results, in which the superpixel indicator variables y
often obtain equal value and body part assignment does not benefit from the decisions
on y. We therefore only relax x to continuous variables in [0,1] and keep y as binary
variables. The relaxed problem can be efficiently solved by a branch and bound method.

An initial random superpixel labeling is used to estimate an upper bound of the
optimization. The branch and bound method picks up a superpixel and generates two
branches: one labels the superpixel 1, and the other labels it 0. The lower bound of the
optimization for each branch is computed using the linear program by relaxing all the
other variables in Eqn.(3). If the lower bound is greater than the current upper bound, the
branch is cut; otherwise it is expanded by including two branches for another superpixel.
The upper bound is updated whenever an integer solution for each y is obtained in a
branch. This procedure repeats until every superpixel obtains binary solution in each
surviving branch.

Our method quickly converges. In the relaxation solution, very few x variables are
nonzero. Keeping only the body part candidates that correspond to these non-zero as-
signment variables, we solve the full integer program. Since there are few variables, the
exhaustive search converges quickly. We can further lower the complexity by reducing
the number of g and h variables. We define them on coarser image blocks instead of im-
age pixels. We use 2500 g and h variables respectively in the optimization. With about
100 torso candidates, 10 thousand candidates for each full limb and a few hundred su-
perpixels, the average running time for the concurrent optimization is about 25 seconds
on a 2.8GHz machine.

3 Experimental Results
We evaluate the proposed method on a variety of video sequences. The test data include
recorded videos and the videos from the web of total 4413 frames and 755-frame videos
from the HumanEva dataset [30]. The four recorded sequences contain complex poses
and strong background clutter. We select the sequences of three different subjects in
different actions from the HumanEva dataset. These sequences are from camera one,
whose view has the strongest background clutter. For each test sequence, we use the
proposed concurrent optimization method to match a cardboard model, estimated from
a single exemplar image in the sequence, to the target images to estimate human poses.
For fair comparison, we use the same “walking” pose exemplar in each sequence for all
the testing methods.

To verify the usefulness of the concurrent optimization approach, we compare it
with some of the variations. We first test whether using superpixel labeling alone would
yield satisfactory foreground estimation. If this were the case, we could use a sequen-
tial optimization instead of the more complex concurrent optimization. Fig.3 shows that
the superpixel labeling alone cannot yield reliable foreground segmentation. Without a
global shape constraint, it gives lots of false positives and false negatives. The con-
current optimization is necessary, and it helps to obtain a roughly correct foreground
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Fig. 3. Foreground estimation comparison. Row 1: sample images from sequence lab-man-I. Row
2: superpixel partitions of images. Row 3: foreground estimation using superpixel labeling alone.
Row 4: foreground estimation using the concurrent optimization.

Fig. 4. Comparison with the dynamic programming method. The 1st row: the DP sample results
for the lab-man-II sequence. The 2nd row: pose estimation using the proposed method.

estimation as shown in Fig.3. With a “taller” torso rectangle, the head of the subject is
also labeled as foreground in the concurrent optimization.

We proceed to compare the proposed method with a variation that optimizes only
the body part matching. If the symmetrical part constraint is also discarded, we have a
tree structure graph model. Pose estimation with a tree structure body plan can be ex-
actly solved using dynamic programming (DP). Fig.4 shows sample comparison results
for the lab-man-II sequence. Without a global constraint, the dynamic programming
method often loses detection of arms and legs, and it is easily distracted by the back-
ground clutter. The quantitative comparison is shown in Fig.6 and Fig.7. Fig.6 compares
the normalized histograms of per-frame errors. Without ground truth, we use visual in-
spection to verify the results. The criterion is that a correct body part detection should
be closely aligned with the corresponding body part or hallucinate on the occluded one.
Since there are 9 body parts, the per-frame error number is from 0 to 9. A good perfor-
mance is characterized by an error histogram that is high in the low error range and low
in the high error range. The proposed method yields much better result than the simple
DP approach. As shown in Fig.7, the average per-frame errors of the proposed method
are less than half of the errors of DP.

It is indeed useful to use simultaneous segmentation to globally constrain the pose
optimization. The question is whether other global constraints would work as well. We
set out to test whether a simple max-covering global constraint would be sufficient. We
label all the superpixels as 1 to introduce a max-covering constraint: the body parts
should cover a region as big as possible. This formulation penalizes the overlapping
body parts equally and prefers a stretched pose. The sample comparison results are
shown in Fig.5. The max-covering method has a difficult time to decide whether to ac-
cept a body part candidate or to reject it as clutter because it does not use the clues from
image segmentation. As shown in Fig.5, the errors of max-covering include both false
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Fig. 5. Comparison with max-covering. The odd rows show the results of max-covering on the
taichi and lab-man-I sequence. The even rows show how the proposed method improves the
results.

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

# of errors

P
ro

po
rt

io
n

 

 

This paper
DP
Maxc

(a) lab-girl

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

# of errors

P
ro

po
rt

io
n

 

 

This paper
DP
Maxc

(b) lab-man-I

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

# of errors

P
ro

po
rt

io
n

 

 

This paper
DP
Maxc

(c) lab-man-II
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(d) lab-man-III
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Fig. 6. The normalized per-frame error histograms of the proposed method (black solid) with the
dynamic programming (DP) (red dash-dotted) and max-covering (Maxc) (blue dotted).
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Fig. 7. The ratio of the average per-frame errors of the proposed method to other methods on the
test sequences.

positives and false negatives. Simply adjusting the parameters will reduce one class of
errors but increase the other. The proposed method does not have such problems and
it achieves much better results on the test image sequences. The quantitative compar-
ison in Fig.6 and Fig.7 shows that the proposed method has many fewer errors than
max-covering.

The proposed method is indeed better than its variations. But does it have an ad-
vantage over other approaches? We first compare the proposed method with the tree
inference method [7], a state-of-the-art method for pose detection in videos using a
single exemplar. We run the code with [7] on the test videos. The body part detectors
are trained from the same walking pose exemplars as those in other testing methods.
The sample comparison results are shown in Fig.8. The tree inference method some-
times loses the detections of arms or legs. The proposed method solves the problem
by using the global foreground shape constraint. It is also more resistant to clutter. As
shown in Fig.8, the proposed method is more reliable in distinguishing two dancers’
legs even though they have similar color. The quantitative comparison is shown in Fig.7
and Fig.10.

We further compare the proposed method with a non-tree method [15]. The sample
comparison results are shown in Fig.9. The non-tree method uses pairwise prohibition
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Fig. 8. Comparison with the tree inference method [7]. The odd rows show the results of tree
method on the dance, lab-man-III and lab-man-II sequences. The even rows show the results of
the proposed method.

Fig. 9. Comparison with a non-tree method [15]. The odd rows show the results of the non-tree
method on the lab-girl and dance sequences. The even rows show the results of the proposed
method.

terms to constrain the symmetrical body parts. It uses the same set of body part candi-
dates and costs as the proposed method in the comparison. Compared with the non-tree
method, the proposed method works better for complex poses and is more robust in
strong clutter. The quantitative results in Fig.7 and Fig.10 confirm the advantage of the
proposed method.

Since we optimize both the body part assignment and the foreground superpixel
labeling, the byproduct is a rough object foreground estimation. Rows 1-4 in Fig.11
show some sample results. More pose estimation results randomly sampled from the
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Fig. 10. The normalized per-frame error histograms of the proposed method (black solid) with
the tree inference method [7] (blue dotted) and the non-tree method [15] (red dash-dotted).

videos are shown in Fig.11. The proposed method robustly detects poses in the videos.
In Fig.11, we also see some part detection errors, especially in the challenging taichi
and dance sequences. In our experiments, pose estimation errors are caused mainly by
the weak local body part detectors. Using stronger part detectors will further improve
the performance.

We also test the proposed method on the ground truth data. Three sequences are se-
lected from the HumanEva [30] dataset. The boxing and walking sequences are down-
sampled in time while the jogging sequence includes all the frames. All the images
are pre-scaled so that the target objects have roughly the same size. These sequences
have strong background clutter. The comparison of the proposed method, the non-tree
method and the tree methods is shown in Fig.12. Besides the tree method in [7] denoted
as tree-I, we also compare with a recent tree method in [28], denoted as tree-II, which

Fig. 11. Pose estimation sample results using the proposed method on the test sequences. Row 1-
4: object foreground estimation samples. Row 5-11: random samples from lab-girl (548 frames),
lab-man-I (779 frames), lab-man-II (1001 frames), lab-man-III (730 frames), taichi (359 frames),
dance(woman) (498 frames) and dance(man) (498 frames).
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Fig. 12. Test on HumanEva walking (222 frames), jogging (362 frames) and boxing (171 frames)
sequences. Row 1: sample frames. Row 2: pose score histograms of the proposed method, the
non-tree [15], tree-I [7] and tree-II [28] methods. Row 3: average pose scores.

uses more robust body part detectors. Tree-II is a state-of-the-art generic pose detector.
For fair comparison, we modify the code for [28] so that color is also used in local
part detection and we tune its parameters to achieve the best performance. We quantify
the performance of pose estimation by the overlapping area of body parts and the cor-
responding ground truth. We compute the overlapping area for arms and legs and do
not count the easiest torso. The total overlapping area is normalized by the sum of all
the ground truth limb areas to form the pose score. Fig.12 compares the histograms of
per-frame pose scores and the average pose scores of different methods. The proposed
method has the highest pose scores in all the tests. Visual inspection shows consis-
tent result. Our method greatly improves the pose detection results. The performance
improvement is not a surprise. Our model enforces a global shape constraint through
simultaneous segmentation and therefore all the body parts are related through hyper-
graph edges. The high order constraint is essential for pose estimation in strong clutter.

4 Conclusion
We propose a novel concurrent optimization method to detect human poses in cluttered
videos. With a single exemplar image, the proposed method robustly finds human poses
in long video sequences. Concurrently optimizing the body part matching and object
segmentation is a great challenge due to its huge search space. We efficiently solve the
hard combinatorial problem by novel linear relaxation and branch and bound method.
Our experiments on a variety of videos show that the proposed method has a clear
advantage over locally constrained methods. The linear approach is also general and it
can be extended to generic object matching and segmentation.
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