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Abstract

We propose a deep convolutional neural network for 3D
human pose and camera estimation from monocular images
that learns from 2D joint annotations. The proposed net-
work follows the typical architecture, but contains an addi-
tional output layer which projects predicted 3D joints onto
2D, and enforces constraints on body part lengths in 3D.
We further enforce pose constraints using an independently
trained network that learns a prior distribution over 3D
poses. We evaluate our approach on several benchmark
datasets and compare against state-of-the-art approaches
for 3D human pose estimation, achieving comparable per-
formance. Additionally, we show that our approach sig-
nificantly outperforms other methods in cases where 3D
ground truth data is unavailable, and that our network ex-
hibits good generalization properties.

1. Introduction
The ability to automatically extract the pose of a person

from an image has many applications, including robotics
and surveillance, among others. It is also important to many
other areas within the computer vision field, such as activ-
ity recognition, tracking, and scene understanding. For this
and other reasons, pose estimation has attracted a lot of at-
tention in the last decade. Until recently, 2D pose estima-
tion was the main focus of investigation, which resulted in
well-known approaches like pictorial structure [10] and de-
formable parts models [33].

3D human pose estimation has also started to attract a lot
of interest from researchers, especially in the activity recog-
nition and tracking communities. Many different kinds
of approaches have been tried, with the most success be-
ing achieved largely with generative modeling approaches,
such as 3D versions of pictorial structure [5, 8, 2], pose-
conditioned joint angle models [1], and approaches based
on Gaussian processes [6]. Although progress has been
made, reliably estimating 3D human pose from a single im-
age remains an unsolved problem.

In general, human pose estimation is an extremely chal-
lenging task. The vast variance in appearance and the high-
dimensional pose space are two of the dozens of issues
faced when tackling the problem. Moving to the 3D realm
only makes things more difficult, in large part due to the
ambiguity inherent in obtaining a 3D understanding of a 2D
image. Indeed, estimating any 3D structure from 2D ob-
servations is a fundamentally ill-posed problem due to the
irreversible (and often unknown) camera projection.

Due to the growing availability of large datasets, dis-
criminative approaches to pose estimation are beginning to
gain traction. Ionescu et al. [11] recently used a random for-
est model for joint pixel part labeling and 3D human pose
estimation. Later, Li et al. [18] trained a multi-task deep
neural network regressor which predicts 3D joint positions
from monocular images. Although these approaches have
achieved some success, they rely on the availability of large
sets of images annotated with 3D joint positions and camera
parameters for training. This type of data is very difficult to
generate, often requiring sophisticated motion capture se-
tups. This places a significant limitation on the data collec-
tion process, and usually restricts the scenes to laboratory
conditions. In contrast, annotating images with 2D joints is
comparatively easy, and can be performed very quickly and
inexpensively using services such as Amazon Mechanical
Turk. Consequently, there exist dozens of 2D pose estima-
tion datasets, featuring a wide-range of poses and appear-
ance, background, and lighting conditions. The main goal
of this work is to leverage the availability of such data for
the 3D human pose estimation task.

In this paper, we present a deep convolutional neural net-
work (CNN) to jointly predict 3D human pose and camera
parameters from a single image, which learns from images
annotated with only 2D joint locations (see Figure 1 for an
illustration of our network architecture). We propose to ad-
dress the ambiguity resulting from using 2D pose informa-
tion by imposing prior knowledge on the 3D pose variables.
We do this by placing a neuron layer on top of the 3D pose
output that computes the lengths of the body parts and us-
ing the loss function to encourage 3D skeletons that have
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Figure 1. Our proposed deep learning architecture consists of three main components, a convolutional neural network (CNN), a camera
projection and bone length computation layer, and a 3D pose prior network. During a forward pass of the network, an input image is passed
through the CNN, which outputs a vector of 3D joint positions and camera parameters. This output is then fed into the camera projection
layer, which computes the 2D joints positions. Similarly, the 3D joints are input to the bone length layer which computes the length of each
body part. The 3D joints are also the input to the pose prior network, which outputs the log prior distribution value for the pose. During
training, the final outputs are compared with the annotations under L2 norm loss functions. See Section 3 for details.

the correct proportions. The output layer also projects the
3D pose onto 2D, allowing us to use a simple L2 norm cost
objective for training. Additionally, we propose a simple
neural network to learn the kinematic structure of 3D poses,
which we train separately and is plugged into our main net-
work to constrain the output. We demonstrate the viability
of our approach by extensive evaluation on several bench-
mark datasets. We also perform experiments to show the
generalization capability of our neural net.

The rest of the paper is organized as follows. In Section 2
we briefly summarize the related work. Section 3 discusses
the CNN regression model in detail, Section 4 shows our
experimental results, and Section 5 concludes.

2. Related work
Human pose estimation is one of the most studied prob-

lems in computer vision [5, 30, 4, 26, 12, 32, 31, 22, 13,
28, 29, 15]. 2D pose estimation approaches range from
part-based models, such as pictorial structure [10] and de-
formable parts models [33] to deep neural networks [30]. In
the last decade, 3D pose estimation has become a subject of
much interest, attracting a wide variety of techniques and
approaches.

There are several approaches where 3D pose is estimated
from 2D landmarks [1, 24]. For example, Akhter and Black
[1] train a pose-conditioned prior over 3D pose, and group
body parts into sets to estimate 3D pose and camera from
2D joint locations. Ramakrishna et al. [24] propose an
activity-independent prior over poses, and use a matching

pursuit algorithm to estimate the 3D pose and camera from
2D landmarks. While effective, these methods suffer from
the disadvantage that there is often no reliable way to obtain
accurate 2D joint locations, or any other 2D landmarks.

The idea of pictorial structure, although originally used
for 2D estimation, has been extended to 3D in several ways
[5, 8, 2]. Belagiaonnis et al. [5] use a 3D pictorial structure
model to estimate multiple poses in multiple views, by min-
imizing the energy function that arises from their model.
Similarly, Amin et al. [2] use a mixture of pictorial struc-
ture models to estimate 3D pose from one or more views.
Burenius et al. [8] use a similar model, and discretize the
solution space and use the max-product algorithm to esti-
mate the pose. The main drawback from the pictorial struc-
ture model is that, in general, it constrains the model to be
discrete. While this works very well in 2D pixel space,
it is more difficult to use in 3D continuous space, where
one must discretize space, and the number of cells can very
quickly become unmanageable.

Another scheme which is related to the work presented
here uses approaches that require only a single image as
input, and estimate both 3D pose and camera parameters
[31, 28]. Simo-Serra et al. [28] generate pose candidates
from part detections, then minimize the reprojection error
to find the best pose. Wang et al. [31] model 3D pose as a
linear combination of a set of pose bases, and infer the co-
efficients for a given image using the alternating direction
method. One of the disadvantages of this approach is the re-
liance on hard 2D pose detection, which is often inaccurate.

585585583



In contrast, we train a regression function directly from im-
ages, without any pre-processing of the data. Also, we use a
full camera model, whereas they assume a weak-perspective
camera model. Finally, Radwan et al. [23] synthesize a set
of poses from part detections and a self-occlusion model,
then enforce a set of kinematic and orientation constraints.
Like our work, this approach is able to deal well with self
occlusion. One key difference is that they assume camera
parameters are known, which simplifies the problem. In
addition to the differences mentioned above, these methods
all use generative models, whereas we train a discriminative
regressor.

Bo et al. train a Twin Gaussian process model [6] on im-
ages annotated with ground truth 3D poses. Although they
show excellent results, they only evaluate their approach on
a single benchmark dataset. Ionescu et al. [11] propose a
random forest model which they train in an iterative way for
both pixel classification and pose estimation. Li et al. [18]
propose a deep convolutional neural network similar to our
own, but it is trained directly on 3D pose annotations. Fur-
ther, all of these approaches assume camera parameters to
be available at least during training, and in one case even at
test-time [11]. Finally, the well-known DeepPose work [30]
also uses deep learning for 2D pose estimation in a similar
way to our approach.

3. Model and representation
Given an image of a person, our goal is to estimate

their 3D pose, as well as the parameters of the camera
used to generate the image. We denote a pose by y =
(y1, . . . ,yM ), where ym = (ym1, ym2, ym3) represents the
3D location of the mth joint, with M = 14 (three joints
for each limb, the neck, and the head). We use the per-
spective camera model and we assume that the camera is at
the world origin, and is aligned with the world coordinate
frame. Consequently, we only need to represent four intrin-
sic parameters: the focal lengths in each axis αu and αv ,
and the principal point coordinates u0 and v0. We use c to
denote both the parameter vector (αu, αv, u0, v0) and the
function

c(ym) =
1

ym3

(
αuym1 + u0ym3

αvym2 + v0ym3

)
(1)

which projects 3D joint ym onto its 2D image location. Fur-
ther, we let c(y) = (c(y1), . . . , c(yM )) represent the pro-
jection of a whole pose y onto the image, resulting in a 2M -
dimensional vector of 2D joint positions. We will also make
use of the body parts (bones) of a pose, which we denote by
wj , j = 1, . . . , 10, representing the eight upper and lower
arms and legs, the neck, and the torso. Additionally, we de-
fine lj to be the length of bone j. Finally, we define a func-
tion l : R3M → RJ which computes the squared lengths of
all body parts associated with y, i.e., l(y) = (l21, . . . , l

2
10).

Figure 2. We formulate 3D human and camera pose estimation as
a regression problem, where the goal is to estimate the regression
function ψ(·;θ) which maps the inputs, in this case an image x,
to the target values, in our case the 3D pose y and camera c. The
regression function has parameters θ, which in our model is given
by a convolutional neural network, which we must learn from la-
beled data (x,u), where u is the 2D pose.

For example, if y1 and y2 are the left and shoulder and el-
bow of pose y, then the component of l(y) corresponding
to the left upper arm is given by (y1 − y2)

T(y1 − y2).

Prior on 3D pose As mentioned above, we need to ex-
plicitly enforce the 3D pose constraints to address some
of the ambiguity resulting from the use of 2D annota-
tions. We use the prior distribution proposed by Brau and
Jiang [7], which consists of two factors: a kinematic prior
and a self-intersection prior. The kinematic prior places
a 4-dimensional Von Mises-Fisher distribution on the ori-
entation of the neck and the upper arms and legs, e.g.,
wj ∼ VMF(µj , κj) for bone j, and a Gamma distribu-
tion on the bending angle of the lower arms and legs, e.g.,
wj′ ∼ Gamma(kj′ , ψj′) for bone j′. The self-intersection
prior is a distribution on the entire pose vector that penalizes
poses which have bones that intersect in space. The result
is a prior distribution over the space of 3D poses, which we
denote by p(y |φ), where φ are the distributional param-
eters of the different factors, e.g., µj and kj′ above. We
obtained values for φ from the authors [7], who trained the
distribution on the CMU mocap dataset.

3.1. Regression for 3D pose estimation

We wish to estimate the regression function ψ(x;θ) ∈
R3M+4 which maps an input image x to a 3D pose y
and camera c, where θ denotes the model parameters
(see Figure 2). We train the model θ on labeled images
D = {(x,u)}, where x is an image and u ∈ R2M

is the ground-truth 2D pose, consisting of M joints, i.e.,
u = (u1, . . . ,uM ). Then, given a test image x∗, the pre-
dicted 3D pose and camera is given by (y∗, c∗) = ψ(x∗; θ̂),
where θ̂ are the learned model parameters.

We use the deep learning framework, whereby ψ is a
deep convolutional neural network (CNN) consisting of
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several layers, each representing different linear and non-
linear functions which are composed to give ψ. The first
layer takes an input RGB image of a fixed size, and the last
layer outputs the target values for the regression, in our case
the 3D pose y and the camera c.

Note that we train our network on images annotated with
2D joints, but our output variables are in 3D space. This has
two implications. First, we must project the 3D pose onto
the image to compute the learning objective function, an op-
eration which we encode in a network layer. More impor-
tantly, we must address the scale and orientation ambigu-
ity inherent in estimating 3D information from images, i.e.,
there are an infinite number of 3D joints y which project
onto the same 2D joint locations. To resolve the scale am-
biguity, we use an additional network layer to enforce con-
straints on the lengths of the body parts w1, . . . ,w10 asso-
ciated to y. Specifically, our objective function penalizes
elements of l(y) which are far from the average lengths of
human body parts (in meters, obtained from human popu-
lation data). For the orientation ambiguity, we introduce a
separate neural network to learn the 3D pose prior described
in Section 3. This prior network takes as input a 3D pose y
and outputs the value of the log-prior distribution log p(y).
The prior network is independently pre-trained and plugged
into the overall deep network with its weights fixed.

3.2. Network architecture

Our overall network architecture is shown in Figure 1. It
has three main components: the convolutional neural net-
work (CNN) portion, the projection and part-length layers,
and the 3D pose prior network. The CNN feeds into the
projection and length network, as well as into the prior net-
work; these in turn contain the final output layers, which are
connected to the training outputs. During a forward pass of
the network, an input image x is fed into the CNN, which
outputs a 3D pose vector y and a camera vector c. Then,
the projection and part-length layers use this as input and
compute 2D joint locations c(y) and bone lengths l(y), and
the pose prior network computes the prior distribution value
log p(y) of 3D pose y.

The convolutional network The architecture of our CNN
is based on the well-known AlexNet [17] introduced by
Krizhevsky et al. in 2012 and used for image classifica-
tion. The net contains eight layers with learnable weights.
The first five are convolutional layers and the final three are
fully-connected layers. The first convolutional layer uses 48
11× 11 filters and the second one 256 5× 5 filters. The re-
maining three convolutional layers apply 384, 256, and 256
filters, respectively, of size 3 × 3. All five layers are com-
posed with rectified linear units (ReLU) for non-linearity, as
well as max-pooling layers, all of which contain no learn-
able parameters. The three fully-connected layers contain

4096 neurons each. The final fully-connected layer feeds
into 3M + 4 = 46 (recall that M = 14) output neurons,
consisting of the 3D joints y and camera parameters c. See
Figure 3 for an illustration of the architecture.

The projection and part-length layers As mentioned
above, we add additional (parameter-free) layers which take
as input a 3D pose y and a camera vector c from the CNN,
and output c(y) and l(y). We do this by constraining the
connections between neurons and applying the appropri-
ate operations. For example, the neurons corresponding to
y11, y13, αu, and u0 are connected to a single neuron in
the final output layer and computes 1

y13
(αuy11 + u0y13).

Similarly, the neurons corresponding the shoulder and el-
bow joints y1 and y2 connect to a single output layer as-
sociated with upper arm and computes its squared length
(y1 − y2)

T(y1 − y2). Figure 4 illustrates this layer de-
sign. We note that the same result could be obtained by
performing these operations in the loss function; however,
using network operations seamlessly takes advantage of the
features present in CNN tools (such as Caffe[14]), such
as auto-differentiation and GPU implementation. During
training, these layers feed into the annotated 2D joint loca-
tions and a fixed 3D length vector.

The 3D pose prior network Figure 5 shows an illustra-
tion of the proposed pose prior neural network. The network
takes a pose vector y as input and outputs the value of the
log-prior distribution evaluated at it, log p(y). It contains
two hidden, fully-connected layers, each with 1024 neurons
and a tanh activation function. The output layer has a sin-
gle node, and feeds into the training data which consists of
the true values of log p(y). As mentioned before, we train
this network separately on a set of 3D pose vectors from
the CMU mocap dataset, along with their corresponding
prior values, computed analytically [7]. The prior network
is trained once, and plugged into the overall network with
its weights fixed.

3.2.1 Training

The final output layer of our network contains 2M+J+1 =
39 (M = 14, J = 10) neurons. We train a linear regres-
sion on top of it by minimizing the L2 distance between
the predicted and the training outputs. As mentioned above,
given an input image x, our network produces three dif-
ferent types of outputs: 2D joints c(y), bone lengths l(y),
and prior value log p(y), where y and c are the values of
the 3D joint and camera parameter layers, respectively, i.e.,
(y, c) = ψ(x;θ) (see Section 3.1).

We define the following loss functions for each of these
outputs. For the 2D joints, we use the L2 distance between
c(y) and u, the annotated 2D joint locations corresponding

587587585



48

256
384 384

256

4096 4096

KS = 5

KS = 11 KS = 3
KS = 3 KS = 3

max-pooling

max-pooling

max-pooling
max-pooling

Figure 3. Our CNN architecture consists of several layers of convolution with different kernel sizes (KS), illustrated by the blue vol-
umes, followed by rectified linear units (ReLU) and max-pooling. After three fully-connected layers, we have output neurons (in orange)
corresponding to the set of 3D joints y = (y1, . . . ,yM ) and the camera parameters c. See Section 3 for details.

3D joints – Camera –

2D joints –

(a) Projection layers

3D joints –

part lengths –

(b) Part-length layers

Figure 4. Illustration of the final output layer of our neural net. (a)
The bottom row of neurons represents the first output layer, con-
sisting of the 3D joint and camera neurons. The top row represents
the final output layer, which contains the projected joints on the
image plane (in 2D) and the lengths of the body parts. Notice the
connections between the neurons. Specifically, u11 is connected
to y11, y13, αu, and u0, and computes the projection operation
1

y13
(αuy11 + u0y13). (b) Similarly, the nodes corresponding to

y1 = (y11, y12, y13) and y2 = (y21, y22, y23) feed into the first
part length neuron l1, which computes the length of bone w1.

to input image x, i.e., L1(θ;x,u) = ‖c(y) − u‖22. For
bone lengths we use the L1 norm loss function with re-
spect to a vector of the squared average human body part
lengths, denoted by l, which we obtained from publicly

1024 1024

Figure 5. An illustration of the pose prior network architecture.
The input layer has 3M neurons, and represents a 3D pose vec-
tor y. This is followed by two fully-connected layers of size
1024 each (shown in blue) with tanh activation functions. Fi-
nally, the output layer (shown in orange) contains a single neuron,
which represents the value of prior distribution of the input pose,
log p(y). See Section 3.2 for more details.

available population data, and is the same for all training
images. This has the effect of encouraging 3D poses of size
which is close to average. The bone length loss is, thus,
L2(θ;x, l) = ‖l(y) − l‖1. Similarly, for the pose prior
output we use the L2 norm loss given by L3(θ;x, p

∗) =
‖ log p(y) − p∗‖22, where p∗ = maxy log p(y) is the log-
prior distribution evaluated at its mode. This loss function
penalizes poses that have a low prior.

The overall loss function L(θ;D, l, p∗) for dataset D is
given by∑
(x,u)∈D

(w1L1(θ;x,u)+w2L2(θ;x, l)+w3L3(θ;x, p
∗)),

(2)
where w1, w2, and w3 are weights that control the in-

fluence of each loss component, and which we set empiri-
cally. We minimize Eq. (2) with respect to θ using the back-
propagation method, using a GPU implementation available
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in the Caffe suite [14]. We process the data in batches of
size 64, and use an adaptive gradient algorithm for opti-
mization. The learning rate parameter is set to 0.01 and
the weight decay to 0.0005. Additionally, we normalize the
data by subtracting out the mean. Finally, we augment the
data by generating random image rotations, as well as flip-
ping the images both horizontally and vertically.

4. Experiments and results
We evaluate our approach in three different ways. First,

we test the performance of our algorithm on standard bench-
mark datasets and compare it with other 3D human pose es-
timation approaches. Next, we test the generalization power
of our system by assessing its performance when trained ex-
clusively on datasets which only provide 2D ground truth
annotations. Finally, we also report performance on the 2D
human pose estimation task.

Datasets We use two 3D pose datasets in our exper-
iments: HumanEva-I [27] and Human3.6M [13]. The
HumanEva-I dataset consists of thousands of frames featur-
ing three subjects performing five different actions (walk-
ing, jogging, throwing/catching, gesturing, and boxing) and
is divided into training, validation, and testing sets. The
Human3.6M dataset contains 3.6 million poses consisting
of 11 subjects acting in 17 scenarios (discussion, smok-
ing, talking on the phone, etc.). It is divided into training
and testing sets, each featuring different subjects. For both
datasets, 3D joint annotations are provided for training and
validation sets, as well as ground truth camera parameters.

We also make use of two 2D pose datasets, Leeds Sports
Pose [16] and MPII Human Pose [3]. The Leeds Sports
Pose dataset consists of 2000 images featuring sports poses.
Similarly, the MPII Human Pose dataset contains roughly
25000 images of a wide-range of poses. Both datasets are
separated into training and test sets, and both are annotated
with 2D body joint locations.

Evaluation metrics For the 3D human pose estimation
task we use the mean joint error metric, also known as the
mean per joint position error (MPJPE), which measures the
distance between the ground truth and estimated 3D joints
averaged over all the body joints. For 2D pose estimation
we use the probability of correct pose (PCP) metric, which
is the fraction of the body parts which are labeled correctly,
where a body part is labeled as correct if its segment end-
points lie within 50% of the length of the ground-truth an-
notated endpoints.

4.1. 3D benchmarks

We evaluate our method on two 3D benchmark datasets,
HumanEva-I and Human3.6M, and compare our results

Walking Jogging Throwing Gesturing Boxing
Ours S1 70.3 73.2 129.4 40.9 69.2

S2 68.1 75.8 110.3 94.8 80.3
S3 80.8 68.1 99.1 63.1 90.8

Radwan [23] S1 75.1 79.2 - - -
S2 99.8 89.8 - - -
S3 93.8 99.4 - - -

Simo-Serra [28] S1 99.6 109.2 - - -
S2 108.3 93.1 - - -
S3 127.4 115.8 - - -

Wang [31] S1 79.1 62.6 - - -
S2 75.7 77.7 - - -
S3 85.3 54.4 - - -

Bo [6] S1 71.7 72.6 149.7 12.3 55.8
S2 46.5 72.4 91.8 95.2 96.8
S3 80.2 73.2 - 36.2 81.8

Table 1. Quantitative comparison of our algorithm with state-of-
the-art methods on the HumanEva-I dataset. The reported values
are the average joint errors (in mm) for each activity (Walking,
Jogging, etc.) and sequence (S1, S2, and S3), where “-” indicates
no results were reported for that configuration. All approaches use
HumanEva-I for training except [23], and our approach and [28]
estimate the camera jointly with the pose.

against several state-of-the-art approaches which use an ex-
perimental setup comparable to ours.

4.1.1 HumanEva-I

We train our network on the training image set, using all
subjects (S1, S2, and S3) and all views (C1, C2, C3). Since
HumanEva-I does not directly provide 2D joint locations,
which are needed to train our model, we project the 3D
joint annotations onto the image plane using the appropri-
ate camera parameters. Additionally, since all images in the
dataset have the same resolution, we use them as-is, with-
out scaling or cropping. Table 1 shows the performance of
our approach on the validation images of the dataset, mea-
sured in average error in mm, as well as the results reported
by four state-of-the-art methods [23, 28, 31, 6]. In general,
our performance is comparable to that of the reported ap-
proaches, and we outperform all of them on some activities.
It is worth noting that all of these methods are trained on
3D data, whereas our model is trained strictly on 2D anno-
tations, and that only one of them [28] (besides ours) esti-
mates the camera parameters. Further, the approach by Bo
et al. [6] assumes background subtraction is available. Fig-
ure 6 shows some examples of predicted poses.

4.1.2 Human3.6M

We compare our performance on the Human3.6M dataset
with another deep learning approach [18], as well as with
the baseline method provided with the dataset [13]. Fol-
lowing [18], we use the images from five subjects (S1, S5,
S6, S7, and S8) for training, and from two different sub-
jects (S9 and S11) for testing. We also crop the images
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Figure 6. Sample results on the HumanEva-I dataset. The top row
shows four sample images, one from each activity (from left to
right: boxing, gesturing, jogging, walking), with the 3D pose su-
perimposed. The bottom row shows the pose from an alternate
angle. Note that the torso is not part of the model, and is shown
for clarity.

Discuss Eat Greet Photo Walk WalkDog H80K
Ours 141.1 90.3 117.9 189.3 59.8 137.1 82.1
Li [18] 148.8 104.0 127.2 189.1 77.6 146.6 -
Baseline [13] 183.1 132.5 162.3 206.5 97.1 177.8 -
Ionescu [11] - - - - - - 92.0

Table 2. Quantitative comparison of our algorithm with state-of-
the-art methods, as well as a baseline [13] algorithm, on the Hu-
man3.6M dataset. The reported values are the average joint errors
(in mm) for six activities and for the Human80K set (final col-
umn). In all cases, we follow the same experimental setup as the
other approaches (see Section 4.1).

around the subject, using the foreground masks provided
with the dataset, and scale them to 224 × 224. The re-
sults are reported in Table 2, where we can see that we
outperform the baseline method, while obtaining compara-
ble performance to [18]. We also evaluate our approach on
the Human80K set, which consists of roughly 80000 im-
ages (cropped around the subjects) from the Human3.6M
dataset. The right-most column on Table 2 shows our re-
sults, as well as the performance of the kernel dependency
estimation (KDE) method introduced by Ionescu et al. [11].
As before, we adopt their training/testing splits for a valid
comparison, and note that our method is the only one which
estimates the camera in addition to the pose. See Figure 7
for examples of predicted poses on this dataset.

4.2. Training on 2D datasets

One of the strengths of our approach is the ability to learn
3D human pose structure entirely from 2D annotations,
which allows us to train on a more diverse set of images
for which 3D annotations are not available. To demonstrate
this, we designed an experiment where we train our neural
network model on images from 2D pose estimation bench-
mark datasets, and we evaluate its 3D pose predictions on
3D benchmark datasets. Specifically, we train our model
on the training images of the Leeds Sports Pose (LSP) and
MPII Human Pose (MPIIHP) datasets, consisting of a to-
tal of roughly 15000 images. As before, we use provided

Figure 7. Sample results on the Human3.6M dataset. The top
row shows four sample images (including two particularly diffi-
cult ones) from different subjects with the 3D pose superimposed.
The bottom row shows the pose from an alternate angle. Note that
the torso is not part of the model, and is shown for clarity.

HumanEva-I Human80K
Walking Jogging

Ours 70.2 79.7 97.0
Ionescu [11] 97.7 94.7 109.9
Baseline CNN 101.3 113.5 122.6

Table 3. Performance of three approaches on the HumanEva-I and
Human80K datasets, when trained on 2D pose estimation datasets
LSP and MPII. The values are the average joint errors, measured
in mm. For [11] and the baseline convolutional neural network
(CNN), training data was obtained by reconstructing the 3D joints
from the annotations in LSP and MPII. See Section 4.2 for details.

subject-centered crops and we scale the images to the same
size. We then evaluate the trained network on the Walk-
ing and Jogging sequences (Subject S1) of the HumanEva-I
dataset, as well as on the training images of Human80K.

We complete the experiment by comparing our perfor-
mance with methods which learn exclusively from 3D joint
data. To do this, we first estimate the 3D joint locations
from the 2D annotations of the LSP and MPIIHP train-
ing sets using a 3D human pose reconstruction algorithm
[1]. We use the resulting 3D joints to train the model from
the KDE method [13] referenced above, using the code
made available from the authors1, and we test it on the
HumanEva-I S1 Walking/Jogging images and on the Hu-
man80K training set (the same testing images used for our
network, see above). We also implement a convolutional
neural network that learns from 3D joint data as described
in [18], which we train and test using the same setup.

Figure 8 shows some example predictions from our
model, and Table 3 compares the performance of all three
methods with the mean joint error metric, measured in mm.
Our approach achieves a significantly smaller error in all

1This approach also requires pixel-level labels of human body parts;
we estimated them using a fully convolutional neural network (similar to
[19]) trained on the Human80K dataset.
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Figure 8. Sample results on the Human80K dataset, with models
trained on 2D datasets LSP and MPII Pose. The top row shows im-
ages with the pose estimated by our approach superimposed. The
middle row shows the poses obtained by [11]. The last row shows
a different view of the pose obtained by our CNN. Note that the
torso is not part of the model, and is shown for purposes of clar-
ity. In general, these images show our model reconstructing more
accurate poses, avoiding major mistakes such as in the second and
sixth rows. This is likely due to the fact that our model is able to
learn from 2D annotations, whereas [11] is designed to train on
ground truth 3D annotations and pixel labels.

Torso Up. leg Lo. leg Up. arm Lo. arm Head
Ours 88.0 70.8 68.5 59.3 41.4 79.6
Chen [9] 92.7 82.9 77.0 69.2 55.4 87.8
Pishchulin [21] 88.7 78.9 73.2 61.8 45.0 85.1
Ouyang [20] 88.6 77.8 71.9 61.9 45.4 84.3
Ramakrishna [25] 88.1 79.0 73.6 62.8 39.5 80.4
Toshev [30] 78.0 71.0 56.0 38.0 - -

Table 4. Quantitative evaluation of the 2D human pose estimation
task on the Leeds Sports Pose dataset. The values in each col-
umn correspond to the PCP measure obtained for the correspond-
ing body part, computed using a 50% threshold, using observer-
centric (OC) annotations. An entry of “-” indicates the values were
not reported by the authors.

three datasets. This is expected, as the two competing mod-
els were trained on estimated 3D joints, which are signif-
icantly inferior to ground truth annotations. In contrast,
our model is trained on manually annotated 2D information,
from which we learn 3D pose and camera structure.

4.3. 2D benchmarks

We also evaluate our method on the Leeds Sports Pose
dataset. We use the training and testing images for learning
and prediction, respectively, scaled to fit the CNN size. For
this experiment, during testing we output the 2D joint po-
sitions c(y) instead of the 3D joints y and camera c. We
measure performance using the probability of correct pose
(PCP) metric on our predicted 2D poses. Table 4 summa-
rizes our results, as well as the results obtained by several
other 2D human pose estimation approaches, as reported by

Figure 9. Sample results on the LSP dataset. For this experiment,
we trained our CNN on the training images of the LSP and the
MPII Human Pose datasets. The top row shows the original frames
with the predicted pose superimposed on the image, and the sec-
ond row shows the predicted pose from a different view. As these
images show, our model is able to predict high-quality poses even
for the most difficult images.

the respective authors. Our model is able to achieve per-
formance comparable to the state-of-the-art. This provides
further evidence that of robustness of our approach, as well
as of the quality of 3D pose and camera estimates. Figure 9
shows example pose predictions output by our model.

5. Conclusion

We present a deep convolutional neural network for 3D
human pose and camera estimation that is capable of learn-
ing from 2D joint annotations. To our knowledge, this is a
novel approach. We avoid the projective ambiguity by in-
corporating prior knowledge into the model in the form of
average human limb sizes in 3D, specified in world units,
and by training a simple deep neural network that learns a
3D prior over poses that has factors corresponding to kine-
matic and self-intersection constraints. We enforce these
constraints, as well as the camera projection operation, us-
ing a network layer whose output is designed to be fed di-
rectly into a simple loss function, such as L2 norm.

We demonstrated the viability of our model with exten-
sive quantitative evaluation, achieving performance com-
parable to the state-of-the-art. Additionally, we show
our model has the capacity to generalize across different
datasets, making it all the more useful. Importantly, we
showed that we can train our model on images from datasets
for which only 2D joint annotations exist, and achieve high
performance on 3D joint prediction.
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